
Randomized algorithms for video
analysis

Jan Scholtyssek

Kongens Lyngby 2014

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Matematiktorvet, building 303B,
2800 Kongens Lyngby, Denmark
Phone +45 4525 3351
compute@compute.dtu.dk
www.compute.dtu.dk

Summary (English)

This thesis is concerned with the application of modern data reduction tech-
niques like algorithmic leveraging and random projections. We review reasons
for applying randomness in image and video analysis by reviewing examples
from literature. We will see that randomness is often a handy tool, especially
when we want to establish analytical results for algorithms, but we will also
point out examples where randomness is less well applied.

A large part of this thesis is concerned with analytical results from relatively
recent papers. We will touch upon the topics of

• Algorithmic leveraging / training models on subsampled data

• Generalized leverage

• Random projections

• SIFT-features

The first 3 topics are dealing with different techniques and aspects of data re-
duction for machine learning techniques, like linear and logistic regression and
SVM. Leveraging is a technique for preserving the rank of the data matrix when
subsampling the data in order to decrease problem size and hence computational
complexity, i.e. reduce computation time. The trick is to use weighted subsam-
pling, where the so called leverage scores are used. We re-prove previous results
showing a better performance for algorithmic leveraging compared to uniform
sampling of data. We will then propose a technique for generalizing leverage

ii

scores and apply it to models where the leverage scores are known and show that
they agree, as well as applying them to new models. We will see that leverage
scores, as used in linear regression do not work for all models.

Finally random projections will be presented, a hot topic from the field of com-
pressed sensing, which provides a technique for fast and approximately distance
preserving reduction of the data’s feature space dimension, while providing an-
alytical error bounds for the distance distortion.

The last topic of SIFT-features will introduce an important tool in image and
video analysis and will bring us to the application part of this thesis.

In the rest of this thesis, we present six tool for video analysis, i.e.

• Cut detection

• Scene categorization (grouping similar scenes together)

• Camera motion detection and stabilization

• Motion-based object extraction

• Line detection

• Video compression

These tools will be introduced together with results from literature, which will
provide benchmarks or guidelines for the work done in this thesis. As an exam-
ple we present recently proposed and tested approaches for cut detection and
compare their performance results with ours. We show that we get similar per-
formance with similar techniques and will then present an improved result in
terms of precision, recall and computation time. To achieve these improvements
we will use the techniques introduced in the theory chapter.

Using the results we can point out strengths and weaknesses of the data reduc-
tion techniques which we introduced and conclude where it is wise to use them
and where traditional, both random and deterministic, methods are preferable.

Summary (Danish)

Vi ser i dette speciale på anvendelsen af moderne metoder til reduktion af store
datamængder, heriblandt teknikker som kaldes algorithmic leveraging og ran-
dom projections. Vi diskuterer anvendelser af tilfældighed i billed- og videoanal-
yse som er anvendt i litteraturen. Vi vil vise at tilfældighed ofte er et smart
værktøj, især hvis vi ønsker at vise teoretiske egenskaber for algoritmer, men vi
vil også give eksempler for anvendelser hvor tilfældighed er knap så smart.

En stor del af denne afhandling handler om teoretiske resultater fra nyere forskn-
ing indenfor tilfældighed i algoritmer. Vi vil bl.a. gå ind på følgende emner

• Algorithmic leveraging / træning af modeller med subsamplede data

• Generaliseret leverage

• Random projections

• SIFT-features

De første tre emner beskæftiger sig med forskellige teknikker og aspekter for
data reduktion i machine learning, bl.a. demonstreret for lineær og logistic re-
gression samt Support Vector Machines. Leveraging er en teknik som hjælper
med at bevare rangen for subsamplede datasæt. Dette opnås ved at lave en
vægtet udtagning af samples hvor de såkaldte leverage scores bruges som vægt-
ning. Vi genbeviser resultater fra en artikel som viser en bedre performance
for lineær regression ved at bruge leverage scores sammenlignet med tilfældig
udtagning af data uden vægtning. Vi vil derefter foreslå en teknik for beregning

iv

af generaliserede leverage scores, som kan anvendes på en bred vifte af modeller.
Vi viser at vores generalisering stemmer overens med de velkendte resultater for
lineær regression og finder leverage scores for andre modeller. Vi vil se at vægtet
udtagning af data ikke virker for alle modeller, heriblandt logistisk regression
og SVM.

Endeligt præsenterer vi random projections, en teknik til reduktion af data fra
forskningsområdet ved navn Compressed Sensing, som har fået meget opmærk-
somhed i senere tid. Den reducerer datamængden ved at projicere data på et til-
fældigt mindre underrum, hvor distancen mellem observationerne tilnærmelsesvist
bevares.

Det sidste emne om SIFT-features introducerer en billedanalyse-teknik som vi
kommer til at bruge meget i den efterfølgende eksperimentelle del.

I den eksperimentelle del præsenterer vi eksperimenter for følgende 6 emner
indenfor videoanalyse:

• Genkendelse af sceneskift

• Scene kategorisering (gruppering af lignende scener)

• Genkendelse af kamera-bevægelse og billedstabilisering

• Billedsegmentering ved anvendelse af bevægelse

• Linie-detektion

• Videokompression

Nogle af resultaterne for disse eksperimenter vil blive sammenholdt med resul-
tater fundet i artikler, som vi vil bruge som benchmark for vores egne teknikker.
F.eks. sammenholder vi resultaterne fra en ret ny artikel som sammenligner
forskellige metoder til genkendelse af sceneskift, hvor vi viser at vi får lignende
resultater ved at anvende deres metoder og viser at vi kan forbedre parametrene
precision, recall og beregningstid ved at anvende teknikker, som vi præsenterede
i teori-afsnittet.

Ved at bruge resultaterne fra vores eksperimenter kan vi udpege styrker og
svagheder af datareduktion ved anvendelse af tilfældighed. Vi kan endeligt give
anbefalinger for hvornår tilfældighed er et godt værktøj og hvor deterministiske
(ikke-tilfældige) metoder er et bedre valg.

Preface

This thesis was prepared at the department of Informatics and Mathematical
Modeling at the Technical University of Denmark in fulfillment of the require-
ments for acquiring an M.Sc. in Informatics.

This thesis is the result of an initial interest of my supervisor Lars Kai Hansen
and me in the results presented on the topic of Algorithmic Leveraging by Ping
Ma, Michael Mahoney and Bin Yu [MMY13]. Their work presents both ana-
lytical and empirical results for the expected bias and variance for the linear
regression parameter for subsampled data. Their main topic is the effect of se-
lecting samples according to different probability distributions. A key concept
is that of leverage scores, which has been known for a long time to be a good
detector of outliers. Their results show, though, that for data with no extreme
outliers, uniform sampling and sampling with respect to the leverage scores have
similar behavior in terms of bias and variance of the linear regression parameter
β̂.

Now linear regression is a very simple model which hasn’t many applications in
state-of-the-art image and video analysis techniques. We were hence interested
in generalizations of leverage scores or ”some kind of measure, telling us which
data is important and which not”. We found various approaches, but only few
generalizable to be used across a wide range of models used in modern data
mining and machine learning.

Simultaneous to the study of generalized leverage scores, we tested a wide range
of image analysis tools, in search for a tool on which leverage scores could
prominently be demonstrated. As time went by, it showed to be hard to find
examples for serious applications of linear regression and leverage scores, which

vi

at the end of the day are only one of many importance measures and only
capture one of many aspects of the data, which might or might not be helpful
in selecting important data. When generalizing our search to demonstrating
the usage of weighting data by known features, another question needed to be
answered: When is it a good idea to use randomness and when not? What is
the use of randomness anyway? Isn’t it just a tool for lazy people, who aren’t
willing to spend extra time to establish deterministic results?

While the answer to the last question is ”of course not!”, there are examples
where an extra thought is well spend on the choice between random and deter-
ministic techniques.

Along the way, a large number of image analysis techniques have been reviewed,
tested and discarded, but only a few of them have made their way into this
thesis as examples. For some of them new contributions have been made, we
believe, while others are silly examples and some of the techniques we present
do perform much worse than the state-of-the-art techniques. We will discuss
why we still present them.

In the work I often got carried away by the temptation of developing and testing
new solutions to many of the problems encountered, even though it wasn’t usable
for this thesis. The fascination for the surprising hardness of image analysis kept
catching my interest a little too often. At a few points you may sense that the
topic is carrying us away from the main discussion of randomness and instead
show what can and can’t be done by using some extra knowledge from the data
we are working with. I hope, though, this feeling will not encounter you too
often.

We hope you will find this thesis interesting to read, discover new theory, be
surprised by the results and inspired by the chosen approaches to test new ones.
There is still a lot to test!

Lyngby, 21-August-2014

Jan Scholtyssek

Acknowledgements

I would like to thank my supervisor Professor Lars Kai Hansen from DTU
Compute for his invaluable and inspiring guidance and insight into the topics
discussed in this thesis. A special thanks for the introduction to leverage scores
and inspiring discussions on redundancy in video data.

viii

Contents

Summary (English) i

Summary (Danish) iii

Preface v

Acknowledgements vii

1 Introduction 1
1.1 Motivation and preview . 1
1.2 Randomness in models . 4
1.3 Report structure . 5
1.4 Conventions . 5

2 Theory 7
2.1 Why randomness? . 7

2.1.1 Literature review . 8
2.1.2 5 Reasons for using randomness 9

2.2 Statistical leverage in linear regression 12
2.2.1 Brief introduction to the experimental setup 13
2.2.2 Summary of results by Ma et al. 16

2.3 Generalized leverage score . 41
2.3.1 The analytical approach 45
2.3.2 Extension to arbitrary models - stochastic simulation . . . 50
2.3.3 Example - SVM . 53

2.4 Other importance measures . 58
2.5 Random projections . 62
2.6 SIFT-features . 65

2.6.1 Computational complexity 69

x CONTENTS

3 Data 71
3.1 Naming conventions . 71
3.2 Data characteristics . 72
3.3 Movies used . 72
3.4 Data representations . 75

4 Experiments & results 77
4.1 Cut detection . 78

4.1.1 Experiment description 78
4.1.2 Results . 79

4.2 Scene category detection . 94
4.2.1 Prior art . 94
4.2.2 Algorithm for scene category detection - SIFT-features . . 95
4.2.3 Algorithm for scene category detection - Random projec-

tions . 98
4.3 Camera motion detection . 102
4.4 Motion-based object extraction 107
4.5 Linearity measure . 112
4.6 Video compression . 121

4.6.1 Weighted sampling . 122
4.6.2 Evaluating the random sample reconstruction 123

5 Discussion 135

6 Conclusion 141
6.1 Further research . 143

6.1.1 Theoretical topics . 143
6.1.2 Experimental topics . 143

A Appendix 145
A.1 Detailed proof of theorem 2.2 . 145
A.2 Non-uniform sampling . 148
A.3 Motion-based object tracking - Examples 150
A.4 Detection of man-made objects 156

A.4.1 Extract objects from images 156
A.4.2 Determining ”man-made”ness 157
A.4.3 Extracting features . 161
A.4.4 Training models . 163
A.4.5 Conclusion . 165

Bibliography 167

Chapter 1

Introduction

1.1 Motivation and preview

This master thesis is part of a series of theses at the Cognitive Systems research
group at the Technical University of Denmark. One research topic is ”Causes
for varying attention levels and focus when watching video sequences”. This
thesis is partly devoted to the definition and extraction of video features which
can be related to the EEG data obtained by Andreas Trier Poulsen and Simon
Due Kamronn (supervised by Lars Kai Hansen) in their thesis [PK13] written
in 2013, though we will not work with the data in this thesis.

Our main focus will be the presentation and extension of data reduction tech-
niques, a survey of video analysis algorithms and the effects of training these
models with subsamples of the original data. We study the effect of weighted
subsampling and compare the performance to unweighted (uniform) sampling.

Why are video data an interesting application for machine learning algorithms?
Some of the biggest datasets which make up a large part of the transfered data
on the world wide web (66% in 2013 according to [Cis14]) and fill up home
computers are videos and images. In comparison all text from the English
Wikipedia can fit into a 9.9 GB compressed file, this is only slightly more than
the size of an average DVD movie. Analyzing video data is hence a notoriously

2 Introduction

hard task in terms of both time and memory. Adding further requirements like
real time analysis adds an extra constraint to the amount of video data which
can be analyzed.

Developing methods which can exploit redundancy and subsample the video
data while being generally applicable to video data is hence the main motivation
for the choices made in this thesis.

Several measures have been developed for doing smart subsampling. Smart sub-
sampling can loosely be defined as minimizing the number of required samples
in order to preserve as much of the data patterns as possible. More formally
this can be expressed as the desire to sample as few rows as possible of the data
matrix X and still have

rank(X) ≈ rank(XS) (1.1)

where XS is a matrix consisting of the sampled rows.

One random sampling technique is uniform sampling, where the observations
are randomly sampled with equal probability and with replacement, i.e. an
observation can be sampled multiple times. Another method is the use of a
measure for the relevance of observations. Several measures exist and differ
in the characteristics they measure. An important measure is the statistical
leverage or leverage scores. In linear regression the statistical leverage expresses
the influence of an observation on the regression parameter β̂, which for a 1-
dimensional dataset is known as the slope of the fitting line. The leverage of
an observation is greater the further away the observation is from the mean of
all observations, as illustrated in figure 2.1. In terms of physics, which inspires
the term leverage, the torque which a force exerts on an object is proportional
to the distance to the point about which the object rotates. Similarly does the
distance of an observation xi to the mean of all observations, x, leverage the
”force” which the observation exerts on the linear regression. We will discuss
the appropriateness of the physical analogy in section 2.3 about generalized
leverage.

Since the leverage is related to the distance of an observation relative to the
others, the leverage score of an observation can also be seen as the likelihood
of this observation to be an outlier. Leverage scores have long been used in the
diagnostics of regression, both for linear and logistic regression.

We define the so called hat matrix for linear regression:

H = X(X′X)−1X′ (1.2)

where X is a data matrix.

1.1 Motivation and preview 3

The leverage scores for linear regression are defined as the diagonal elements hii
of the hat matrix. These diagonal elements describe the influence of yi, the re-
sponse of the ith observation, on the prediction ŷi of the same observation. The
leverage of an observation is high when it has a large impact on the regression
and hence the predicted value of itself. Figure 2.2 shows three artificial datasets
and the leverage scores for these observations indicated by their color. We see
how observations on the outer edge have a higher leverage.

The hat matrix H has a number of properties and interpretations. As mentioned
above the hat matrix H quantifies the influence of response vector y on the
prediction vector ŷ through the relation

ŷ = Hy (1.3)

The surprising fact about the hat matrix is its sole definition by the data matrix
X. We may hence wonder if such an equation, only dependent on the data
matrix, is available for other models as well.

A last fact about the hat matrix is, that it is a projection matrix and hence
idempotent (H2 = H). When the hat matrix is applied to the response vector
y it projects the points (xi, yi), i = 1, 2, ..., n onto the hyperplane of the best
linear fit of the data given the data matrix X and the response vector y.

Since the leverage scores measure the importance of observations for the pre-
dictive model, they can be used as weights for sampling, such that observations
with a high leverage are more likely to be sampled. But will this give us more
reliable linear regression parameters?

Ma, Mahoney and Yu ([MMY13]) show that non-uniform sampling, using lever-
age scores, is faster converging to the ”true” regression parameter than uniform
sampling, though they show that cases exist where uniform sampling may per-
form just as well as sampling with respect to the leverage scores. They also
show that a mixture of leverage-based sampling and uniform sampling can give
even better results. We will take a closer look at their results and discuss the
relevance for our purpose in section 2.2.

The charming thing about sampling with respect to an importance measure
like leverage scores is the better data reduction while preserving the important
data. Other techniques exist and we hence will also have a brief look at random
projections.

While the theory we present is interesting by itself, it’s always the application
of theory which shows what works and what doesn’t. Not only is it sometimes
hard to apply theory to real data to train a model, but video and image analysis

4 Introduction

in particular is a surprisingly hard task, as it is discussed in an article with the
telling name ”Why is Real-World Visual Object Recognition Hard?” [PCD08]
by Pinto et al. The article is not concerned with the reasons for the hardness
of object recognition as such, but criticizes the uncritical use of natural object
recognition in brain modeling as a benchmark for the goodness of the brain
models. They point out that object recognition is hard because an object can
appear in an almost infinite number of ways, which makes it necessary to pro-
vide a large set of reference images to detect objects. The article also states
a great fact about image and video analysis: Because humans are extremely
good at performing visual tasks and the algorithms available today are merely
a match for human capabilities, the development of visual algorithms is highly
inspired by our knowledge of the brain and the pathways that visual stimuli
take. As an example, research in visual perception has helped optimizing the
sampling of colors. Since we have a higher horizontal resolution than vertical
resolution in our eyes and also have a higher brightness resolution compared
to color resolution, images and video are today sampled with a scheme where
brightness is sampled at double the rate of color (chrominance).

Some of the video analysis tasks which are presented later in this thesis have
been given a lot more attention than we are able to present in this thesis.
Some of the methods we present will be outdated in comparison to results from
recent research. When searching the literature it was overwhelming to see the
amount of research done. Since this thesis is not primarily concerned with the
improvement of recognition results (although we tried to give it an honest shot)
we recommend to study the existing literature on the topics for more recent
results and methods. One example is video compression, which we in no way
can provide a competitive result for. We will instead present ideas, which we
hope will inspire approaches using importance measures like leverage scores.

1.2 Randomness in models

Randomness is part of many models. K-means uses randomness for initializing
the clusters, bagging and boosting uses it for selecting subsets of the data. But
we may wonder if a deterministic approach would work equally well or better.
Where is it useful to use randomness and what characteristics are common for
all applications of randomness?

A traditional way to reduce data is to select every nth observation from the
dataset. While the optimal reduction of redundant data is an important prob-
lem and would deliver topics for more than one thesis, we will not thoroughly
examine how little information in a video sequence is needed to analyze it. At

1.3 Report structure 5

different points of this thesis we will encounter considerations, where exactly this
question of information content and loss would be a handy tool for the improve-
ment of the presented methods. For example we will dig into video compression
by randomly sampling from the original video according to an importance mea-
sure. Even though we calculate signal-noise ratios, we refer to the research field
of Compressed Sensing for a detailed analysis of the statistical boundaries for
data reduction through sampling in image and video. A great introduction to
the topic with only the most basic mathematics is given by Candès and Wakin
in [CW08].

1.3 Report structure

The rest of this report will be structured in the following way. We will start
in chapter 2 by presenting a theoretical perspective on random sampling and
the effect on different models like linear regression and SVM. We also present
alternative approaches to those found in the discussed literature. In chapter 3
we will present the data used in our experiments, before moving on to motivate
and describe the experiments in chapter 4. The results of the experiments will
be presented together with the description of the experiments. We will then
in chapter 5 discuss the results and compare them to the theory and discuss
advantages and disadvantages of random sampling in video analysis. We finally
conclude the discussion in chapter 6 and suggest further research which has to
be done to improve the techniques and results found.

The appendix holds mathematical (re-)proofs of lemmas from the literature,
calculations and experiments which are done for topics presented but too long
to be in the main text, MATLAB code and additional figures.

1.4 Conventions

For easier reading we will use the following naming- and symbol-conventions.

Naming conventions

6 Introduction

Method Synonym for algorithm, procedure or function
Subsampling Building a smaller dataset by sampling from a larger

dataset
Deterministic result A mathematical statement which holds true in all

cases if the assumptions in the statement are met.
Probabilistic result A mathematical statement which holds true with a

given (usually high) probability.

Symbol conventions

A Matrix
a Vector
A′ Transpose of matrix A
N,n Number of observations in data matrix X
p Number of features in X
r Sample size
hij Element (i, j) of the hat matrix H for the discussed regression
d Dimension
β Parameter vector for general linear regression models
β̂ Optimal solution to a given regression problem
x Mean value of the values in vector x
Vec[X] Vectorization of matrix X, i.e. the stacked columns of X
Diag(X) Diagonal elements of matrix X
Diag(x) Diagonal matrix with x as diagonal elements
E[X] Expectation of stochastic variable X
V ar[X] Variance of stochastic variable X

Chapter 2

Theory

2.1 Why randomness?

A question which kept popping up throughout the work with this thesis was, if it
is necessary to use randomness in the experiments presented later. Can’t we just
use a deterministic approach? One example might be the temporal subsampling
of video sequences. The usual approach is to use, say, every second frame of
the video sequence, which is a deterministic subsampling of the data. Why is
there a need for a random selection? The article [MR96] by Rajeev Motwani
and Prabhakar Raghavan tries to provide answers to that question. Let’s take
a look at a few of the reasons presented:

The first reason they present is inspired by cryptography, in which an algorithm
is desired to be stable under all possible inputs. Deterministic algorithms may
have special cases of input where they perform poorly or even fail. A randomized
algorithm is much less likely to encounter an input on which it fails. If it does,
the algorithm can be restarted with new random settings and hopefully obtain
a (new) solution.

The second reason presented is random sampling for saving computation time.
This topic will be one of our main concerns in this thesis and we will see that
there is more to random sampling than just computation time savings.

8 Theory

A third reason is an approach to searching large solution spaces for a solution
to a given problem. Randomly selecting points from the space and check if they
are solutions is a common strategy for finding solutions or solution candidates.
We may ask, why not to use a regular pattern for the search? A problem with
deterministic search is, that if there is a pattern in the solutions, we risk to
select a pattern which exactly doesn’t match the pattern of the solution. Say
all even numbers are solutions to a given problem. If we test with all the odd
numbers, we are not going to find a solution. As long as we don’t have any
extra information on the pattern in the solutions, we will have better worst-case
performance for random algorithms. As soon as we have any extra information,
we may use a deterministic approach to account for the extra knowledge (or
randomly sample the new subspace). Bottom line is that random algorithms
often have a better worst-case performance.

A last reason is load balancing in the absence of knowledge of the whole system’s
utilization. Especially in the distribution of resources it seems to be a better
idea to use deterministic approaches to scheduling and hence using randomness,
which may have a decent but not optimal performance, seems like the wrong
idea. But if a load balancer is operating without full information, a random
approach may deliver both better average and worst-case performance. This can
be summarized by a preference for randomness, when not sufficient information
is available.

We will try to extend this list (though we have not presented all reasons pre-
sented by Motwani et al and we will encounter overlaps with the reasons pre-
sented).

To answer why randomness is used for video analysis in addition to the reasons
presented above, we will start by reviewing some of the literature which is dealing
with video and image analysis in a broad sense. We focus on the application of
randomness and will conclude by summarizing the reasons in the next section
(2.1.2).

2.1.1 Literature review

We have searched the literature we used in other parts of this thesis for the
keyword ”random” and recorded the reasons for using randomness. Only a few
of our findings are presented here, since many reasons are the same at their core.

A first reason for randomness comes from [KH03], which deals with the detec-
tion of man-made structures. The article uses Markov Random Fields (MRF)
for estimating regions with man-made structure. MRFs can be simulated by

2.1 Why randomness? 9

stochastic simulation, which uses randomness to generate realizations for the
random variable associated with each node in the MRF. The use of MRF is
in [KH03] is primarily an optimization method and used to search the solution
space in a smart way.

In [AC10] random projections are used, a tool which we will also use in this
thesis. Random projections is a dimension reduction technique which reduces
the feature dimension by projecting data on a low-dimensional random subspace.
Why not use a deterministic projection? We cite the authors:

”It is easy to see that randomness is necessary if we hope to make
meaningful use of the reduced data; otherwise we could be given as
input a set of vectors belonging to the kernel of any fixed matrix,
thus losing all information.”

Again we encounter a usage of randomness to avoid worst-case behavior. In
the case of random projections we will see that using randomness allows us to
state analytical bounds for the distortion of the distance between points and ob-
tain other probabilistic and deterministic properties for the random projections,
which would not be generally possible for a deterministic projection.

In [OCLF10] randomness is used in several ways. The main topic is a new
keypoint detection and matching technique called ”random ferns”, which uses
randomly selected pre-defined binary features, groups them together and seeks
to optimize the joint probability of a given class given the data (and the inverse
problem found by applying Bayes rule). Random ferns are developed as a non-
hierarchical alternative to random trees. The randomness is here again used
as a sampling method with better worst-case and similar average performance
than deterministic feature sampling.

Furthermore randomness is used for generating training data, by randomly de-
forming the set of training images to obtain a test image in which patches are
found by using the discussed methods of random ferns and SIFT-features (a
technique which we will heavily rely on in our applications and present in sec-
tion 2.6).

2.1.2 5 Reasons for using randomness

From the examples of randomness usage found in the articles discussed above,
we will summarize these cases into 5 reasons for randomness. We will also
discuss deterministic alternatives where appropriate.

10 Theory

Reason 1: Generating data In both supervised and unsupervised learning,
we need data to train on. Sometimes we are lucky to find databases built by
others, but often we may have specific requirements and it is then hard to find a
suitable database with labeled data. It is then possible to use artificial data or
extending a few labeled training datasets by randomly distorting the data, as it
is done in [OCLF10]. When using artificial data from a known distribution, as is
done in our main article [MMY13], the data drawn are altered by adding noise
from a second distribution. Random data generation has no direct deterministic
counterpart, though deterministic datasets are sometimes used to demonstrate
pathological behavior of models.

Reason 2: Reducing data Datasets can be large and the computation time
for models is often proportional to the amount of input data. By randomly
(uniform or weighted) selecting observations, the amount of data can be reduced.
Often data is redundant, i.e. informations from some observations are already
represented in the dataset by other observations. Let’s say we want to find
a straight line from noiseless data. A line is completely defined by 2 points in
space. Any more points do not provide extra information. Though in reality our
measurements will always be noisy and hence more observations help in finding
the best fit, the extra data may not always add sufficient extra information to
a model to justify the extra cost of keeping it.

Random sampling of datasets also covers the case when a model is to be tested
for all possible combinations of parameters, but the number of combinations is
just too large to be tested altogether. Random sampling can then help select
the most ”important” parameter combinations (see also reason 5).

Deterministic alternatives are the use a regular patterns, e.g. selecting every
nth observation. If a weighting of observations is present, e.g. leverage scores,
a deterministic approach is to select the k highest weighted observations. Such
an approach is presented in [PKB14].

Reason 3: Best guess when not in control Using uniform random sam-
pling from a dataset or population might be the best option, if we have no defini-
tive knowledge about the the effect of a certain parameter on the outcome. De-
terministic selection of observation to cover the parameter range equally might
sometimes be a better idea, but with randomness we can cover the full param-
eter space with a non-zero probability density and hence, if we can repeat the
experiments, get a more precise result.

Example: Selecting patients for a medical study. If we are not completely sure

2.1 Why randomness? 11

that gender has an effect on the variable we want to measure, then it’s best
to randomly sample patients across the genders. On the other hand, if doing
a study on pregnancy, you are safe to sample only female patients, because we
have full control over the effect of the gender on the probability of becoming
pregnant.

Reason 4: Adding/modeling knowledge is too expensive Sometimes
extra knowledge about a parameter is known and a parameter might even be
deterministically defined by other parameters, but if the relationship is too
complicated or too expensive to be calculated, a random value might be a good
replacement. Often the distribution of the random parameter can be made a
close approximation to the real value by using knowledge/relationship which is
easy to model.

Example: Let the mileage of a car be closely related to the number and shape
of turns it takes during its drive. Let the route be long. Even if the route is
known, it might be too time consuming to count and model all turns to get the
exact mileage. Then a random guess for the parameters from a carefully chosen
probability distribution may be a good alternative.

Reason 5: Optimization / parameter sweeping Randomness can be used
to help optimization methods converge to a global optimum, by "shaking" the
system and hence help optimization methods escape from a local optimum. Also
randomness can be used to find a good starting point got iterative optimization
methods by sweeping the solution space at random to find regions more likely
to be close to the global optimum. We also saw an example of Markov Random
Fields, which also is a random method for searching the solution space for
solutions.

Of the reasons for randomness presented above we will mainly focus on reason 2,
reducing data, since video analysis is usually a data heavy task with lots of data
and features. The size of the problems and the computation time of models for
video analysis greatly benefit from reducing the size of the dataset, as we will
see in some of our experiments. The size of the original video sequences can be
reduced by rescaling the single frames and downsample the frame rate. At least
that’s the usual method. We will in section 4.6 evaluate how random sampling
can be done and if it is superior to deterministic downsampling.

12 Theory

Figure 2.1: The solid line shows the linear regression fit including all data and
the dashed line shows the linear regression without the data point
in the upper left corner. Data point 12 clearly has a large influence
on the regression. Figure taken from a presentation by William
G. Jacoby, Michigan State University [Jac]

2.2 Statistical leverage in linear regression

Linear regression is probably the most well-known fitting methods, used in many
fields of science, even in those fields which otherwise have no mathematical
elements. Linear regression is easy to understand and it is easy to compute for
problems with a moderate number of features. Even though linear regression
might be relatively efficient to compute, it is of interest to reduce the size of the
problem for faster computation or high-dimensional data. There is nothing new
in the observation that some observations are more important for the result of
the linear regression than others. Many measures have been developed for linear
regression diagnostics, like the hat matrix (origin unknown), Cook’s distance
([Coo77],[CW82]) and reliability matrices/measures ([Pró10],[KWR10]). As we
see in figure 2.1, taken from a lecture slide by William G. Jacoby [Jac], we
see that a single outlier can change the regression of 50-100 other points, if
it is just extreme enough. It is hence desirable to quantify the importance of
observations for the regression. The common tool for quantifying the influence
of observations is the hat matrix which is defined as

H = X(X′X)−1X′

It is not clear how long the hat matrix has been known, but one of the first

2.2 Statistical leverage in linear regression 13

papers available in digital form mentioning the hat matrix is the paper "The
Hat Matrix in Regression and ANOVA" [HW78] by David C. Hoaglin and Roy
E. Welsch published 1978. In their paper the authors summarize the many
relations of the hat matrix to other concepts like the covariance matrix. They
also present an efficient computation method for the diagonal elements of the
hat matrix by using the QR-decomposition and Singular Value Decomposition
(SVD). An earlier paper which by [PKB14] has been pointed out as one of the
earliest works in the subsampling of matrices for low-rank approximations is
the paper ”Discarding variables in a principal component analysis. i: Artificial
data” by Jolliffe [Jol72]. The topic of hat matrix outlier detection and low-
rank approximations hence has a long history and the topic is still under active
development.

While it has been known at least since the 1970s, that the diagonal elements of
the hat matrix quantify the influence of the observations, it is only recent that
the value of the diagonal elements have been used to subsample observations
from a dataset. In the article by Ma et al. ([MMY13]) stochastic simulation
is used to show the effect of subsampling observations with respect to different
sample weights, primarily uniform weights and hat matrix diagonals (leverage
scores). On top of the evaluation of the pure usage of leverage scores for sub-
sampling, the paper also contributes with 2 improved sampling techniques and
evaluates approximate computations of the hat matrix diagonals. We will only
go into details with one of the alternative leveraging methods.

2.2.1 Brief introduction to the experimental setup

We will here make it clear, what we are about to do by giving a formalized
explanation of the experimental setup.

We are given a dataset X, which is a n × p-matrix, where n is the number of
observations and p is the number of features. Let y be the response vector con-
taining the response for each of the n observations. y is hence a n-dimensional
vector.

The linear regression is fitting the data such that the square of the residual is
minimal (least squares method). The predicted values are found by

ŷ = Xβ (2.1)

where β is calculated by
β = (X′X)−1X′y (2.2)

.

14 Theory

We are going to experiment with the effect of randomly sampling a subset of
the observations from X according to a probability distribution {πi}ni=1, i.e.∑
i πi = 1, πi ≥ 0. For uniform random sampling πunifi = 1

n . When sampling
with respect to the hat matrix leverage scores, i.e. the diagonal elements of the
hat matrix hii, we use πlevi = hii∑n

j=1 hjj
.

Naming convention:

We are going to encounter several alternative ideas for calculating leverage
scores, which often more exactly would be described as importance measure,
since the term leverage scores has historically been associated with the hat
matrix in linear regression. Since we are going to discuss generalizations
of the hat matrix leverage scores, we will continue to use the term leverage
scores as long as we are discussing importance measures which are related
to the hat matrix and generalizations. In cases where it is not clear from the
context which leverage score we discuss, we will call the importance measure
derived from the diagonal elements of the hat matrix by hat matrix leverage
scores or statistical leverage.

Let S′X be a sampling matrix, which has dimensions r × n, where r is the
sample size and n is the number of observations. The rows of S′X have exactly
one element set to 1 and 0’s otherwise. A ”1” at position i in row j means that
observation i will be sampled from X in the jth draw. The subsampled set
of observations will hence be denoted XS = S′XX, obtained by applying the
sampling matrix SX to X. The corresponding subsampled response vector will
be denoted yS = S′Xy.

The response vector y is generated from a chosen ground truth parameter β0

by
y = Xβ0 +N (0, σ) (2.3)

where N (0, σ) is a normal distribution with standard deviation σ. This adds
noise to the response vector.

Given the probability distribution {πi}ni=1, we do the following for each sample
size r:

1 Sample r observations from X according to the probabilities πi and store
the result as XS .

2 Build the corresponding response vector yS .

2.2 Statistical leverage in linear regression 15

3 Find β and store it.

4 Repeat this process k times and find the mean and variance of β

For each sample size r the process is repeated k times in order to find an estimate
for the bias and variance of β, which then can be compare to the theoretical
result and other probability distributions.

We define the squared bias of β̂r: Let β̂r(i) be the ordinary least squares (OLS)
estimate of the linear regression parameter β for a sample size r and experiment
i. Let

β̂r =
1

k

k∑
i=1

β̂r(i) (2.4)

be the average OLS estimate for sample size r.

We then define the squared bias of β̂r by

Bias(β̂r)2 = ‖β̂r − β0‖22 (2.5)

The variance of β̂r is defined as follows: Let β̂rj (i) be the jth element of the
OLS estimate of β for sample size r and experiment i. Denote by V ar[β̂rj] the
variance of the jth element of β̂r over all experiments i = 1, ..., k for sample size
r. We then define the total variance by

V ar[β̂r] =
1

p

p∑
j=1

V ar[β̂rj] (2.6)

i.e. the average of the element-wise variances.

Let’s summarize the parameters which we can adjust:

n: The number of observations
p: The number of features
{πi}ni=1: The probability distribution
r: The sample size
k: The number of experiments for each sample size r.

Ma et al. present results for variations of all these parameters. Varying the
probability distribution is done in two ways:

1) Sampling according to the uniform distribution or with respect to the
leverage scores

16 Theory

2) Changing the underlying distribution of the dataset X. This affects the
distribution of the leverage scores.

Ma et al. use a multivariate normal distribution and two multivariate t-distributions
with 1 and 3 degrees of freedom. We present the details of the distributions in
section 2.2.2.3.

2.2.2 Summary of results by Ma et al.

The results by Ma et al. are diverse and touch upon several aspects of varying the
parameters discussed above. We will limit ourselves to presenting the following
3 results:

• Discussion of the role of reweighting samples.

• A lemma which states the expectation of the bias and variance of the
linear regression parameter β.

• The result of the stochastic simulation of the subsampled linear regression

The first important contribution by Ma et al. is the analytical expression for
the expectation of the bias and the variance of the linear regression parameter
β when subsampling the problem. Since we perform the sampling from the
dataset X at random, we get different results for the linear regression parameter
β in each run. The mean and variance of β depends on several of the chosen
parameters, e.g. the sample size and the distribution of the dataset.

Before we start, we have to touch upon a topic, which is barely documented by
Ma et al. In their article they distinguish between 4 methods. UNIF which is
sampling with respect to a uniform probability distribution, LEV which samples
observations from the data matrix X with respect to the leverage scores, i.e. the
diagonal elements of the hat matrix. SLEV, Shrinked Leverage, is using a linear
combination of the leverage scores and uniform probability as the weighting, i.e.
the weight for observation i is πSLEVi = απLEVi + (1− α)πUNIFi for α ∈ (0, 1).
The last method is LEVUNW, which is sampling with respect to the leverage
scores from the hat matrix, just like LEV, but there is a little detail, which is
not immediately clear why Ma et al. choose to emphasize on it.

2.2 Statistical leverage in linear regression 17

2.2.2.1 Reweighting subsampled linear regression

Ma et al. choose to reweight the subsampled linear regression problem for
the first 3 methods, UNIF, LEV and SLEV. The reason only becomes clear
after digging through two levels of references. In an article by Drineas, Kannas
and Mahoney, [DKM06], on approximate matrix multiplication, the authors
explain why a reweighting of the subsampled problem is necessary and what the
reweighting constants should be. Before we explain the reweighting, let’s define
the subsampled linear regression problem.

Let S′X be a sampling matrix. A simple subsampled linear regression is hence
defined as

β̂unweighted = argmin
β
‖S′Xy − S′XXβ‖2 (2.7)

This is actually the problem solved by Ma et al.’s LEVUNW method and is what
we will present in our experiments below. Ma et al. show that this method has
a slightly better bias when averaging over different datasets (different response
vectors) and similar variance to the LEV method, which Ma et al. present as
the former standard in leverage based sampling. But here’s the catch.

When subsampling two matrices by selecting random rows and columns in order
to approximate a matrix product, the elements in the approximated matrix
product will be biased with respect to the full matrix product. In order to ensure
β̂r in the subsampled linear regression problem to be unbiased with respect to
the full solution β̂, Ma et al. reweight the observations by the sample size and the
sample probabilities of the sampled observations (see details below). This step
is easier to understand when we consider approximating matrix multiplication,
as it is presented in BasicMatrixMultiplication Algorithm of section 4
in [DKM06]. We start by stating the matrix-subsampling algorithm.

Algorithm 1 Let A be a m× n matrix and B a n× p matrix. Let {πi}ni=1

be a probability distribution, i.e.
∑n
i=1 πi = 1, πi ≥ 0 and let 0 < r ≤ n be the

sample size.
Draw with replacement r indices Idxi ∈ {1, ..., n}, i = 1, ..., r according to the
probability distribution {πi}ni=1.
Define the matrix C of size m× r and R of size r × p. Let C(i) denote the ith
column of C and C(j) denote the jth row. C and R are then defined by

C(i) = A(Idxi)/
√
rπIdxi

, i = 1, ..., r

R(i) = B(Idxi)/
√
rπIdxi

, i = 1, ..., r

C hence consists of reweighted samples of columns in A and R consists of
reweighted samples of rows in B.

18 Theory

Drineas et al. propose to approximate the matrix product AB by CR. They
note that the matrix product AB can be represented as the sum of the outer
product of the columns of A and the rows of B:

AB =

n∑
i=1

A(i)B(i) (2.8)

The approximation can hence be written as

CR =

r∑
i=1

C(i)R(i) =

r∑
i=1

1

rπIdxi

A(Idxi)B(Idxi) (2.9)

The following lemma, a part of lemma 3 in [DKM06], shows that this definition,
in particular the chosen reweighting by 1√

rπi
makes the expectation of (CR)ij

unbiased with respect to (AB)ij .

Lemma 2.1 Let A, B, C and R be defined as in algorithm 1. Then

E[(CR)ij] = (AB)ij

Proof. Let Xt = 1
rπIdxt

A(Idxt)B(Idxt) be the randomly sampled weighted
outer product of column Idxt of A and row Idxt of B where Idxt is drawn
according to the probability distribution {πi}ni=1. These are the matrices which
are summed to obtain the approximate matrix product in 2.9.

The expectation of Xt is calculated by summing all outer products and weighting
them by the probabilities {πi}ni=1 (here Xt stands for the whole matrix, while
Drineas et al. use it to denote a particular element in the matrix). This gives
us

E[(Xt)ij] =

n∑
k=1

πk
1

rπk
(A(k)B(k))ij

=
1

r
(AB)ij

To find the expectation of (CR)ij we observe that

CR =

r∑
t=1

Xt

2.2 Statistical leverage in linear regression 19

and hence

E[(CRij] = E[

r∑
t=1

(Xt)ij]

=

r∑
t=1

E[(Xt)ij]

= r

(
1

r
(AB)ij

)
= (AB)ij

We hence conclude that the elements in the approximated matrix product are
unbiased with respect to the full matrix product. �

We have learned from this that reweighting each sample by 1√
rπi

results in an
unbiased approximation of the matrix products. From this result it makes sense
to add reweighting to the linear regression, by multiplying the sampled matrix
S′XX and sampled response vectors S′Xy by a diagonal r×r reweighting matrix
D defined by

Dii =
1

√
rπki

, i = 1, ..., r (2.10)

where ki denotes the row index of the sampled observation in the ith draw.

The reweighted linear regression hence has the form

β̂reweighted = argmin
β
‖DS′Xy −DS′XXβ‖2 (2.11)

This is the the problem which is solved by the methods UNIF, LEV and SLEV
in [MMY13] with different probability distributions {πi}ni=1.

From this discussion it may be surprising that the unweighted method LEVUNW
works at all.

And in fact Ma et al. show that it doesn’t converge to the OLS estimate of β̂
for a fixed dataset and response vector. The reason, why it’s still of interest
is, that it does converge to the true underlying β0 when averaging over several
datasets. We prove this in the next section.

20 Theory

2.2.2.2 Deriving the analytical expression for β’s expectation and
variance

The following theorem (lemma 6 in [MMY13]) states the relationship between
the expectation and variance of β̃w, the solution to the unweighted subsampled
linear regression in equation (2.7), with respect to the sample size r, number of
features p, the sampling probability distribution π and the full dataset X.

The notation used needs a little explanation before we present the theorem itself.
Let W = SXS′X and let w = Diag(W) be the vector of diagonal elements of
W. By β̃w we denote a solution to the subsampled linear regression, weighted
by w. The solution to the unweighted subsampled linear regression in equation
(2.7) can hence be written as

β̂unweighted = β̃w = X(X′WX)−1X′Wy (2.12)

We also note that SXS′X is a n × n diagonal matrix where the ith diagonal
element is equal to the number that observation xi has been sampled. Since
the sampling frequency of observation xi is governed by a binomial process with
probability πi and r draws. The mean for a binomial distribution is known to
be rπi. Hence the expectation of W, denoted W0, is

W0 = E[W] = E[Diag(w)] = Diag(rπ) (2.13)

.

We now state lemma 6 from the article by Ma et al. For brevity we write
V−1 = (X′W0X)−1.

Theorem 2.2 The conditional expectation and conditional variance for the
unweighted algorithmic leverage problem, i.e. the subproblem solved is an un-
weighted least squares problem with r observations sampled with replacement
from the dataset X according to the the probability distribution {πLEVi }ni=1 and
corresponding weight vector w, are given by:

E[β̃w|y] =β̂wls + E[Rw] (2.14)

V ar[β̃w|y] =V−1X′ [Diag(ê)W0Diag(ê)] XV−1 (2.15)
+ V ar[Rw]

where W0 = E[W] = Diag(rπ), V−1 = (X′W0X)−1, β̂wls = V−1X′W0y and
Rw is a remainder term from the Taylor expansion explained in lemma 2.3.

2.2 Statistical leverage in linear regression 21

The unconditional expectation and variance are given by:

E[β̃w] =β̂0 + E[Rw] (2.16)

V ar[β̃w] =σ2V−1X′W2
0XV−1 (2.17)

+ σ2V−1X′Diag(I− PX,W0)W0Diag(I− PX,W0)XV−1

+ V ar[Rw]

with PX,W0
= XV−1X′W0.

Before we can prove this, we need to prove the following lemma, which states
the Taylor expansion of β̂(w) = β̂unweighted, the solution to the unweighted
subsampled linear regression problem stated in equation (2.7).

Lemma 2.3 The linear regression parameter β̂(w), expanded around w0 = rπ
has the following Taylor expansion

β̂(w) = β̂wls + (X′W0X)−1X′Diag(ê)(w − rπ) +Rw (2.18)

where β̂wls is the solution to the weighted linear regression problem in equation
(2.11) and ê = y −Xβ̂wls.

We will now prove lemma 2.3.

Proof. We start by noting that the first order Taylor expansion of a function
f(x) around the point x0 has the following form

f(x) = f(x0) +
f ′(x0)

1!
+Rf (2.19)

We hence have to find ∂β̂(w)
∂w′ . From equation (2.13) we recall that the expecta-

tion of w is rπ, so we choose to expand β̂w around w0 = rπ.

We remember that (X′WX)−1X′Wy is a vector and we hence have

(X′WX)−1X′Wy = Vec[(X′WX)−1X′Wy] (2.20)

We hence can write

∂β̂(w)

∂w′
=
∂(X′WX)−1X′Wy

∂w′

=
∂Vec[(X′WX)−1X′Wy]

∂w′

22 Theory

We now use the following equation, found in [Har13]:

Vec[ABC] = (C′ ⊗A)Vec[B] (2.21)

with

A = (X′WX)−1

B = X′Wy

C = Ip

where Ip is the identity matrix of size p. We get

∂Vec[(X′WX)−1X′Wy]

∂w′
=
∂(Ip ⊗A)Vec[B]

∂w′

Since both A and B depend on W and hence implicitly on w we can view this
as an expression of the form ∂f(w)g(w)

∂w′ which has the derivative with respect to
w′

∂(f(w)g(w))

∂w′
=
∂f(w)

∂w′
g(w) + f(w)

∂g(w)

∂w′
(2.22)

Applying this with

f(w) = (Ip ⊗A)

g(w) = Vec[B]

we get

∂(Ip ⊗A)Vec[B]

∂w′
= (Ip ⊗A)

∂Vec[B]

∂w′
+
∂(Ip ⊗A)

∂w′
Vec[B]

= (Ip ⊗A)
∂Vec[B]

∂w′
+ (Ip ⊗

∂A)

∂w′
)Vec[B]

We observe that by applying equation (2.21) twice to (Ip ⊗ ∂A)
∂w′)Vec[B] (first

from right to left, then from left to right) we get

(Ip ⊗
∂A)

∂w′
)Vec[B] = Vec[

∂A

∂w′
BIp]

= Vec[Ip
∂A

∂w′
B]

= (B′ ⊗ Ip)Vec[
∂A

∂w′
]

With Vec[∂A∂w′] = ∂Vec[A]
∂w′ we can express the derivative of β̂(w) as

∂β̂(w)

∂w′
=(Ip ⊗A)

∂Vec[B]

∂w′
(2.23)

+ (B′ ⊗ Ip)
∂Vec[A]

∂w′
(2.24)

2.2 Statistical leverage in linear regression 23

which corresponds to equation (25) and (26) in [MMY13].

We would like to remove anything not depending on w from the derivatives.
Observe that Vec[B] = Vec[X′Wy] which has the form of equation (2.21) and
hence can be expressed as

Vec[X′Wy] = (y′ ⊗X′)Vec[W] (2.25)

We will use this in (2.23). In (2.24) we first need another formula (see equation
(60) in [PP08]):

∂Vec[X−1]

∂(Vec[X])′
= −(X−1)′ ⊗X−1 (2.26)

We apply the chain rule to ∂Vec[A]
∂w′ such that we can use this formula.

∂Vec[A]

∂w′
=

∂Vec[A]

∂Vec[X′WX]′
∂Vec[X′WX]

∂w′

We can now apply (2.26) to the first fraction and (2.21) to the second. We get

∂Vec[A]

∂Vec[X′WX]′
∂Vec[X′WX]

∂w′
= (−A′ ⊗A)(X′ ⊗X′)

∂Vec[W]

∂w′
(2.27)

We now apply (2.25) and (2.27) to (2.23) and (2.24), respectively, and rearrange.

(Ip ⊗A)
∂Vec[B]

∂w′
+ (B′ ⊗ Ip)

∂Vec[A]

∂w′

= (Ip ⊗A)(y′ ⊗X′)
∂Vec[W]

∂w′
+ (B′ ⊗ Ip)(−A′ ⊗A)(X′ ⊗X′)

∂Vec[W]

∂w′

= ((Ip ⊗A)(y′ ⊗X′) + (B′ ⊗ Ip)(−A′ ⊗A)(X′ ⊗X′))
∂Vec[W]

∂w′

we now use the following property of the Kronecker product

(A⊗B)(C⊗D) = AC⊗BD (2.28)

Applying this several times we get

((Ip ⊗A)(y′ ⊗X′) + (B′ ⊗ Ip)(−A′ ⊗A)(X′ ⊗X′))
∂Vec[W]

∂w′

= ((Ipy
′ ⊗AX′) + (−B′AX′ ⊗ IpAX′))

∂Vec[W]

∂w′

= ((y′ ⊗AX′) + (−B′AX′ ⊗AX′))
∂Vec[W]

∂w′

Another property of the Kronecker product is

(A⊗B) + (C⊗B) = (A + C)⊗B (2.29)

24 Theory

Applying this rule and observing that

(B′AX′)′ =
(
(y′W′X)(X′WX)−1X′

)′
= X(X′WX)−1X′Wy

= Xβ̂(w)

we get

((y′ ⊗AX′) + (−B′AX′ ⊗AX′))
∂Vec[W]

∂w′

= ((y − (B′AX′)′)′ ⊗AX′)
∂Vec[W]

∂w′

=
(

(y −Xβ̂(w))′ ⊗AX′
) ∂Vec[W]

∂w′

We can finally put this into equation (2.19). We note that β̂(rπ) = β̂wls is the
solution to the weighted subsampled linear regression, and with ê = y−Xβ̂wls
we get

β̂(w) = β̂(w0) +
∂β̂(w)

∂w′

∣∣∣∣
w=w0

(w −w0) +RW

= β̂wls +
(

(y −Xβ̂(w))′ ⊗AX′
) ∣∣∣∣

w=w0

(
∂Vec[W]

∂w′

) ∣∣∣∣
w=w0

(w −w0) +Rw

= β̂wls +
(

(y −Xβ̂wls)
′ ⊗ (X′W0X)−1X′

)(∂Vec[W]

∂w′

) ∣∣∣∣
w=w0

(w −w0) +RW

= β̂wls +
(
ê′ ⊗ (X′W0X)−1X′

)(∂Vec[W]

∂w′

) ∣∣∣∣
w=w0

(w −w0) +Rw

It remains to show that(
ê′ ⊗ (X′W0X)−1X′

)(∂Vec[W]

∂w′

) ∣∣∣∣
w=w0

= (X′W0X)−1X′Diag(ê)

This is shown by applying equation (2.21). Note that the derivative of a vector
of length k with respect to a vector of length l has the size k × l (see [Bar06]).
Also note that Vec[W] of the diagonal matrix is a vector with the diagonal
elements separated by n zeros and has the total length n2. The derivative with
respect to w′ hence is a n2 × n matrix. This results in the transformation of ê
into Diag(ê). �

Equipped with the Taylor expansion of β, we can now prove theorem 2.2.

Proof. We start with the expectation results.

2.2 Statistical leverage in linear regression 25

The result for the conditional expectation follows directly from the Taylor expan-
sion in lemma 2.3. Remember that we chose w0 = rπ because the expectation
of each diagonal element of W is rπ, see equation (2.13). We hence have

E[β̂w|y] = β̂wls + (X′W0X)−1X′Diag(ê)E[(w − rπ)]︸ ︷︷ ︸
=0

+E[Rw]

= β̂wls + E[Rw]

We continue with the unconditional result for the expectation, as it is just as
straight forward as the above result. Now y is a stochastic variable. Since β̂wls
now is a function of y we hence have to find its expectation. Remember that all
y are generated from β0 by adding white noise (normal distributed) and hence

E[y] = E[Xβ0 +N (0, 9)] = Xβ0

It follows now that

E[β̂wls] = E[(X′W0X)−1X′W0y]

= (X′W0X)−1X′W0E[y]

= (X′W0X)−1︸ ︷︷ ︸
A−1

X′W0X︸ ︷︷ ︸
A

β0

= β0

and we hence have

E[β̂w] = β0 + E[Rw]

since the middle part of the Taylor expansion vanishes for the same reason as
for the conditional case.

The variance results need a little more work. We need the following equality
(easy to see, according to Ma et al. ;-)):

E[(wi − rπi)(wj − rπj)] =

{
rπi − rπ2

i i = j
−rπiπj i 6= j

(2.30)

or in a matrix version

E[(w − rπ)(w − rπ)′] = Diag(rπ)− r2ππ′ (2.31)

The proof is given in note 1 of appendix A.1.

Observe that the factor β̂wls in the Taylor expansion does not contribute to the
variance, since it does not depend on w. We also note that

V ar[x] = E[(x− x)(x− x)′] (2.32)

26 Theory

The conditional variance can hence be found to be

V ar[β̂w|y] =V ar[(X′W0X)−1X′Diag(ê)(w − rπ)|y]

+ V ar[Rw]

=E[(X′W0X)−1X′Diag(ê)(w − rπ)(w − rπ)′Diag(ê)X(X′W0X)−1]

+ V ar[Rw]

=(X′W0X)−1X′Diag(ê)E[(w − rπ)(w − rπ)′]Diag(ê)X(X′W0X)−1

+ V ar[Rw]

=(X′W0X)−1X′Diag(ê)[W0 − r2ππ′]Diag(ê)X(X′W0X)−1

+ V ar[Rw]

where we used equation (2.31) in the last step. The fact that the factor −r2ππ′

vanishes is demonstrated in note 2 in appendix A.1.

For the unconditional variance result we use the rule of double expectation, also
known as law of total variance or Eve’s law, i.e.

V ar[Y] = E[V ar[Y |X]] + V ar[E[Y |X]] (2.33)

Since we have already found E[β̃w|y] and V ar[β̃w|y], we can find the uncondi-
tional variance.

For brevity we again write V−1 = (X′W0X)−1. We first note that E[RW] and
V ar[RW] are independent of y and hence are only added in the end. We then
start with

E[V ar[β̃w|y]] = E[V−1X′Diag(ê)W0Diag(ê)XV−1]

= V−1X′E[Diag(ê)W0Diag(ê)]XV−1

= V−1X′Diag(v)E[Diag(y)W0Diag(y′)]Diag(v)XV−1

= V−1X′Diag(v)E[Diag(y)Diag(y′)]W0Diag(v)XV−1

with vi = 1−
(
XV−1X′W0

)
ii
. Observe that

E[Diag(y)Diag(y′)] = Diag(E[y2
i])

and we find

E[y2
i] = E[(xiβ0 + ε)2]

= E[(xiβ0)2] + E[2xiβ0ε]︸ ︷︷ ︸
=0

+E[ε2]︸ ︷︷ ︸
=σ2

= E[(xiβ0)2] + σ2

2.2 Statistical leverage in linear regression 27

When putting this back into the equation and denote by a ◦b the element-wise
product of vector a and b we observe that

E[V ar[β̃w|y]] =σ2V−1X′Diag(v)W0Diag(v)XV−1

+ V−1X′Diag(v)E[Diag(Xβ0)Diag(Xβ0)]W0Diag(v)XV−1

=σ2V−1X′Diag(v)W0Diag(v)XV−1

+ V−1X′E[Diag(v ◦Xβ0)︸ ︷︷ ︸
=0

W0 Diag(v ◦Xβ0)︸ ︷︷ ︸
=0

]XV−1

=σ2V−1X′Diag(v)W0Diag(v)XV−1

since

v ◦Xβ0 = Xβ0 −X(X′W0X)−1X′W0Xβ0

= 0

Next we find that

V ar[E[β̃w|y]] = V ar[β̂wls]

= V ar[V−1X′W0y]

= (V−1X′W0)2V ar[y]

= V−1X′W2
0XV−1V ar[y]

= V−1X′W2
0XV−1σ2

When we collect all the pieces we get the desired result

V ar[β̃w] =σ2V−1X′W2
0XV−1

+ σ2V−1X′Diag(I−PX,W0)W0Diag(I−PX,W0)XV−1

+ V ar[Rw]

(though Ma et al. misuse the Diag(X) notation, since Diag(I − PX,W0) would
suggest a vector of diagonal elements of the matrix I − PX,W0

, but Diag(I −
PX,W0

) needs to be an n× n matrix). �

We expect that the linear approximation by using the Taylor expansion is a good
approximation for β(w). This would imply that the remainder-terms Rw are
small and have expectations and variance close to 0, such that we can discard
them. For a given dataset X and corresponding response vector y we hence
expect that the expectation of β̃w is the ordinary least squares estimate βwls for
the weighted linear regression problem in equation 2.11. The behavior of the
variance is not as clearly determinable from the expressions in theorem 2.2.

28 Theory

2.2.2.3 Simulation results

Having the analytical expressions for the bias and variance is an important
achievement, since we are now guaranteed to see a convergence of β̂w towards
the solutions β̂wls and β0 for increasing sample sizes r as long as the assumptions
are met. But what effect does it have on data? How good an approximation
is the 1st degree Taylor expansion? How big is the influence of the sampling
probabilities?

To answer these questions we will use stochastic simulation to simulate linear
regression on artificial datasets and vary some of the parameters, while fixing
the others. For a full set of results, with more variations of the parameters, we
refer to the original article by Ma et al.

We want to show here the comparison of sampling with respect to the uniform
distribution and with respect to the leverage scores for datasets with different
distributions of the leverage scores. We fix the number of experiments for each
sample size and configuration to k = 1000, which is providing enough averaging
for showing a smooth graph of the improved variance and bias when increasing
the sample size. While Ma et al. perform the same test for several numbers
of features, p, we will fix p = 10. We also fix the number of observations to
n = 1000.

Theorem 2.2 above states two results, one for the conditional case, where we are
given a response vector, i.e. a specific dataset and response. The other result is
the unconditional result, where the response is not specified. For the simulation
this means we have to decide which case we want to simulate. If we want to
simulate the conditional case, we will generate a single dataset and response
vector from which we are drawing samples. The lemma then ensures us, that
the mean of β is converging towards the ordinary least squares estimate for the
weighted subsample problem.

If we want to simulate the unconditional case, we have to generate a new re-
sponse vector in every experiment. The lemma then states that the expectation
of β̂ is β0, equation (2.3).

Below we only present results for the unconditional experiments, since we want
to eliminate artifacts from specific datasets, affecting the ordinary least squares
estimates of the full problem.

Let’s specify the datasets we are going to use. Ma et al. generate synthetic
datasets, all using the covariance matrix Σ with

Σij = 21−|i−j|. (2.34)

2.2 Statistical leverage in linear regression 29

This form ensures that Σ is in fact a covariance matrix1. We generate the
following 3 datasets:

• GA - Multivariate Gaussian: This dataset is generated from a multi-
variate Gaussian distribution with mean-vector 1 and covariance matrix
Σ.

• T3 - t-distribution, 3 df : This dataset is generated from a t-distribution
with 3 degrees of freedom and covariance matrix Σ.

• T1 - t-distribution, 1 df : This dataset is generated from a t-distribution
with 1 degrees of freedom and covariance matrix Σ.

All datasets are approximately centered, i.e. the mean of all features have an
expectation of 0.

The response vector y is found by choosing β0 = {1, 1, ..., 1} and adding ε ∼
N (0, 9) such that

y = Xβ0 + ε. (2.35)

The GA dataset has no significant outliers in the observations, i.e. the data in
the X matrix, while the T3 dataset has some outliers with a decent distance
from the rest of the data and the T1 dataset has outliers with even more extreme
outliers. Figure 2.3 shows a distribution of the observations’ Euclidean distance
to the mean of the data for the GA, T3 and T1 dataset, respectively. The
distribution of the leverage scores looks very similar and is hence not shown.

We see that the observations for the GA dataset are broader distributed, while
the T3 and T1 dataset show a high concentration of observations close to the
mean with few observations further away. In linear regression the leverage scores
are higher for observation wit a greater distance from the mean, as we can see
in figure 2.2 showing a colored surface of the leverage scores for the 3 datasets.

In terms of physics, leverage is the distance of a force from the center of rota-
tional axis. The greater the distance the greater the rotational moment of that
force is. The same holds in linear regression for data points far from the mean of
the data. We saw in figure 2.1 in chapter 1 how an outlier with a high leverage
score can affect the linear regression. Since the number of outliers in the T3
and T1 dataset is small compared to the total number of observations, uniform
sampling may not sample the outliers and hence have a greater variance in the

1see Taboga, M. (2010) "Lectures on probability and statistics", http://www.statlect.com,
for a list of properties of a covariance matrix.

30 Theory

(a) GA (b) T3 (c) T1

Figure 2.2: Leverage score distribution for the 3 datasets GA, T3 and T1. Red
indicates higher values, blue lower ones. The coloring is interpo-
lated and only exact at the data points (+).

prediction parameter β̂ over several trials compared to leverage based sampling,
which samples the outliers with a much higher probability.

We can now recreate the results found by Ma et al. by generating these synthetic
datasets and perform linear regression. Afterwards we will also test the same
methods on logistic regression. Like Ma et al. we use datasets with n = 1000
observations and p = 10 features. We will find the bias and variance of β̂ for
sample sizes r = {50, 100, 150, ..., 1000}. For every sample size we perform the
subsampling and regression k = 1000 times. The uniform sampling is performed
by using MATLABs rand-function. For the leverage based sampling we first
find the leverage scores and then use our own function for non-uniform sampling
which can be found in appendix A.2.

In the results below we also show errorbars showing the empirical standard
deviation for a bootstrap estimate of the average value. Since each data point in
the plots is found from k = 1000 experiments, we have 1000 values of β̂ for each
data point. We find a bootstrap estimate by drawing k values with replacement,
recalculate the bias and variance and estimate the empirical standard deviation
of the data points. The bootstrapping is performed M = 100 times for each
data point.

The results for p = 10 are shown in figure 2.4. We see that uniform and leverage-
based sampling perform similarly well for the GA dataset. For the T3 and T1
dataset we see that leverage-based sampling leads to a lower variance in β̂ and
a lower bias for small sample sizes.

Compared to the results by Ma et al. in their figure 1 and 4 we see that we get
very similar results, both in terms of the overall tendencies and in terms of the
numerical values for the variance and bias. We observe, though that the bias
results are very noisy, even after averaging over 1000 experiments. We attribute

2.2 Statistical leverage in linear regression 31

this to the fact that the bias is extremely low and hence easily influenced by
small variations in the data.

We observe that the bias of the leverage sampling has a better bias performance
for low sample sizes, but as the sample size increases, the improvement levels
out, which can be attributed to the fact that the leverage scores are extremely
low on most of the observations for T3 and T1 and hence at a certain sample size
no new points are included into the sample. Eventually the uniform sampling
outperforms leverage sampling for sample sizes close to the full data set size.

We expected that the bias in the high-leverage observations, especially for T1,
where very few observations have high leverage scores and hence the sampled
datasets are mainly repetitions of a few observations. We hence expected that
the bias would be largely influenced by the noise of the response to the high
leverage observations. By experiments, where the 10 observations with highest
leverage scores had a noiseless response, i.e. yi = xiβ0, we found though that
there was no better bias behavior for neither the reweighted LEV method, nor
the unweighted LEVUNW method.

2.2.2.4 Extension to logistic regression

We now move on to evaluate the performance of leverage-based sampling on
logistic regression. We are only considering logistic regression with two classes
to make the analysis more simple.

From [Pre81],page 771, we have an expression for the hat matrix in general
linear models, which is given by

H = W
1
2 X(X′WX)−1X′W

1
2 (2.36)

where W is a diagonal weight matrix which in the case of logistic regression
with two categories has the following diagonal elements

Wii = pi(x, β)(1− pi(x, β)) (2.37)

with
pi(x, β) =

exp(β0 + β · xi)

1 + exp(β0 + β · xi)
(2.38)

W
1
2 is the diagonal matrix with the square root of the diagonal elements of

W. Unfortunately the probabilities pi are only available after a full logistic
regression has been performed on the data. The leverage scores found from the
hat matrix will hence be of little help in reducing data by sampling prior to

32 Theory

fitting the data. Nonetheless we will show the effect of using these informations
in sampling.

In figure 2.6 we show the leverage scores for the GA dataset for linear and logistic
regression. Leverage scores for the linear and logistic regression are similar in
that the leverage scores are increasing the further the observations are from the
center. For logistic regression we in addition see that the high leverage scores
only show up in the direction of equal weights, i.e. where pi(1− pi) is constant
(see figure 2.9), such that only a small group of observations on the edge of the
distribution gets high leverage scores.

In regression the data matrix is often extended by a columns of 1s, which serves
as an offset for the data, such that non-centered data can be handled. We use
centered datasets in our experiments but nonetheless add a column of ones to
the dataset (first column) and let β1 be the value of β which determines the
offset. The ground truth β0 is now a p+ 1-dimensional vector and is defined by
β0 = {0, 1, 1, ..., 1}.

Furthermore logistic regression is about finding the probability of class ”1” on
Rp, which is assumed to follow a logistic function. We denote the probability
function for class ”1” by p : (Rp+1,Rp) → [0, 1]. Since it is assumed to follow a
logistic function, it is defined by

p(β,x) =
exp(β1 +

∑
i βi+1xi)

1 + exp(β1 +
∑
i βi+1xi)

(2.39)

We cannot fit the logistic function directly, but observe that the inverse function

p−1(β,x) = ln

(
p(β,x)

p(β,x)− 1

)
= β1 +

∑
i

βi+1xi (2.40)

is a linear function. We hence fit the inverse function. From β̂ we then find the
probability function p(β,x).

There is a problem though: The logistic function is close to 0 or close to 1
”most of the time”, i.e. p(β,x) for a fixed β is only taking values in the interval
(ε, 1 − ε), ε > 0 for a narrow band of width δ > 0 in Rp. If the width δ of
that band, for an ε close to 0, is much smaller than the diameter of the dataset
and few or none observations are in that band, the logistic regression is ill-
defined. We illustrate the problem in figure 2.5, where we show 1-dimensional
separable data and 3 logistic functions, which all fit the data well. Since β is
directly related to the center and shape of the logistic function, the length of β̂
is not well defined. It will hence be problematic to compare β values of different
logistic regressions, especially when using weighted subsampling, which might
skew the probability of class ”1”. Since the observation density is critical for the

2.2 Statistical leverage in linear regression 33

fit in the region where the logistic function raises from 0 to 1, subsampling can
make the problem worse by lowering the observation density in that band. Our
experiments will have to show if these expectations hold.

We start our experiments by using the diagonal elements of the hat matrix H,
defined in equation (2.36), as leverage scores.

Since we are dealing with categorical data, the process of generating the response
vector y is different from that in linear regression. We start by generating a
noiseless ground truth response

y0 = Xβ0 (2.41)

From this we find the distribution of the class ”1” probabilities p by

pi = p(β,xi) = p(y0i) =
exp(y0i)

1 + exp(y0i)
(2.42)

Our experimental response vectors are then found by setting yi = 1 with a
probability pi and 0 otherwise.

The results of our experiments are shown in figure 2.7, where also results for
an additional sample sizes of 10 and 25 are shown. We observe that leverage
sampling in most cases, except for the bias in the T1 dataset, performs worse
than uniform sampling, like we expected. We have to note though, that espe-
cially the bias results show biases in the order of e−1 up to e5 even for high
sample sizes. We hence can confirm the problem with ill-defined β’s for logistic
regression. This is especially clear for the bias of the uniform sampling for the
T1 dataset, where the squared bias for large sample sizes settles at approx. e2

with a low variance. At the same time the squared bias for leverage sampling
for the T1 dataset has a higher variance and settles at a different β̂ for large
sample sizes. The low squared bias for the uniform sampling in the T1 dataset
at sample sizes of 25 and 50 do we consider as artifacts, taking into account the
higher standard deviation of the bootstrap estimate.

In figure 2.8 we show the dataset and the class to which the observations belong.
As discussed before, we had concerns that a observation density in the band
where the logistic function rises results in ill-defined values for β̂. We hence
may wish to have an importance measure which is higher for observations in the
band where the probability for class ”1” are in the interval (ε, 1− ε), ε > 0, since
from the previous discussion we expect these observations to be more likely to
affect the logistic regression. In figure 2.9 we show a scatterplot of the data
with the diagonal elements of W assigned as color. We see that the weights
of points in the band are higher and we hence repeat the experiment with the
diagonal elements of W as sampling weights. Figure 2.10 shows the result of
the experiments using the normalized W-diagonals as sampling probabilities.

34 Theory

We observe almost the same tendencies and quantitative results as for hat ma-
trix leverage sampling. We see again that uniform sampling performs slightly
better on the GA dataset, though the bias is still high and the variance is in
approximately the same order of magnitude. For the T1 dataset we see that
both uniform and weighted sampling show a low variance, but again the two
methods converge to different β̂’s. Interestingly we observe the same artifact for
the squared bias of uniform sampling in the T1 dataset, as we already saw in
the previous experiment. We do not know why the solution for these low sam-
pling rates is closer to β0 than for other sample sizes. This might be arbitrary
behavior.

We conclude that using sampling based on leverage scores, no matter if we use
the hat matrix diagonals or the diagonals of W, we obtain results for uniform
and weighted sampling which are comparable for the GA dataset, which has
relatively uniform leverage scores, though uniform sampling performs slightly
better. For the T1 dataset, we observe that weighted sampling converges to
a solution closer to the β0, but both uniform and weighted sampling fail to
converge reliably to β0. It hence seems to be a bad idea to use subsampling for
logistic regression.

2.2 Statistical leverage in linear regression 35

(a) GA

(b) T3

(c) T1

Figure 2.3: Histogram of the observations’ distance from the mean for the data
in the GA, T3 and T1 dataset, respectively. The figure shows that
the data is more concentrated around the mean for T3 and T1 than
for the multivariate normal distribution.

36 Theory

(a) GA (b) GA

(c) T3 (d) T3

(e) T1 (f) T1

Figure 2.4: Variance and bias of the linear regression parameter β for several
sample sizes r, found for a dataset with n = 1000 observations
and p = 10 features. The response vector y is uniquely generated
for each experiment. For each data point we have averaged over
the result from k = 1000 regressions. The errorbars are obtained
from a bootstrap estimate.

2.2 Statistical leverage in linear regression 37

Figure 2.5: Several logistic functions fitting the same data, illustrating the ill-
defined problem of logistic regression for separable data.

(a) Linear regression leverage scores (b) Logistic regression leverage scores

Figure 2.6: Leverage scores for the multivariate normal distributed dataset,
GA, with n = 1000 for linear and logistic regression.

38 Theory

(a) GA (b) GA

(c) T1 (d) T1

Figure 2.7: Variance and bias of the logistic regression parameter β for sub-
sampled problems, where the sample weights are the diagonal ele-
ments of the hat matrix in equation (2.36).

2.2 Statistical leverage in linear regression 39

Figure 2.8: The GA dataset for p = 2 with colors indicating the class to which
the data belongs.

Figure 2.9: Scatterplot of the multivariate dataset with p = 2. See figure 2.8
for the same data with class labels. The color of the observations
show the weight wi = pi(1 − pi). Red indicates a higher weight,
blue is lower. Observations closer to the boundary between class
”0” and ”1” have higher weights.

40 Theory

(a) GA (b) GA

(c) T1 (d) T1

Figure 2.10: Variance and bias of the logistic regression parameter β for sub-
sampled problems, where the leverage of observation i is pi(1−pi)
from the full logistic regression result.

2.3 Generalized leverage score 41

2.3 Generalized leverage score

Now that we have tested the traditional leverage scores and have seen varying
success, we are interested in the generalization of these leverage scores.

Bo-Cheng Wei et al. generalize in [WHF98] the statistical leverage. They point
out that the statistical leverage in linear models can be defined in multiple ways
and hence reflects multiple characteristics in the statistics of the data. They
choose to generalize the leverage by defining

GL =
∂ŷ

∂y′
(2.43)

which is the derivative of the predicted response ŷ with respect to the observed
response y.

They show that the hat matrix H is found as a special case, when applying this
definition to a generalized linear model. We show this in a minute.

One interpretation of the leverage scores, hii, by Wei et al. is ”hii denotes
a certain ’distance’ from xi to the sample mean x , the center of the data
(Cook & Weisberg, 1982, p. 12)”. More exactly Cook and Weisberg [CW82]
note, that the contour of a certain leverage score hii is an ellipsoid centered
at the observation mean. Hence the leverage scores are, for linear regression,
monotonically increasing on rays pointing from the mean outwards. This fact
is visible in figure 2.11 for

Σ =

(
4 1
1 1

)
(2.44)

Though there is a link between the distance from the mean and the leverage
score, this is not a proportional relationship, as it can be seen in figure 2.12,
which shows the square root of the leverage score versus the distance from the
mean for the 3000 observations shown in figure 2.11. Figure 2.14 shows the
logarithm of the ratio between the leverage scores and the distance from the
observations’ mean:

R = log

(
hii
‖xi‖2

)
(2.45)

We observe that the ratio is small in the center and that the ratio is small in the
direction of higher variation. This is in agreement with the observation made
by Cook, i.e. the contours of the leverage score values are ellipsoids centered
at the observations’ mean and scaled according to the variation in the different

42 Theory

Figure 2.11: Example of data from a 2-dimensional multivariate normal dis-
tribution with µ = 0 and Σ given in 2.44.

directions. The leverage scores at the outer edge of the observation blob are
the same, but the distance from the observations’ mean is different. A higher
distance results in a smaller ratio.

If the variation in all direction is the same, i.e. Σ is an identity matrix (multiplied
by a scalar), we see from figure 2.13 that the square root of the leverage scores
versus the distance from the observations’ mean is a proportional relationship.

The leverage scores are hence a weighted distance, where different directions in
the data are weighted according to the variation in the principal components.
This makes the relationship to the physical term leverage a little more clear,
where the distance to the point of revolution is called the lever, but we have to
note that the distance is weighted.

2.3 Generalized leverage score 43

Figure 2.12: The square root of the leverage score versus the distance from the
mean for the observation shown in figure 2.11.

Figure 2.13: The square root of the leverage score versus the distance for a
multivariate normal distribution with Σ an identity matrix.

44 Theory

Figure 2.14: Logarithmic ratio of the square root of the leverage score versus
the distance from the mean for the observations shown in figure
2.11.

2.3 Generalized leverage score 45

2.3.1 The analytical approach

Recall that the article by Wei, Hu and Fung [WHF98] generalizes the concept
of leverage scores to arbitrary models by defining the generalized leverage to be
the derivative of the predicted response ŷ with respect to the observed response
y,

GL(a) =
∂ŷ

∂y′
. (2.46)

We now want to show how to calculate the generalized leverage given an objec-
tive function Q(a,X,y) which takes the model parameter a, the observations X
and the observed response y as input. Wei et al. state and prove the following
theorem.

Theorem 2.4 Let ã(y) be a unique set of parameters which minimizes the
objective function Q(a,X,y). We then have

GL(ã) =

(
∂µ

∂a′

(
− ∂2Q

∂a∂a′
(a,X,y)

)−1
∂Q

∂a∂y′
(a,X,y)

)∣∣∣∣
a=ã(y)

(2.47)

where µ = E[y] is the expectation of the observed response y.

In the version of Wei et al. a = (β, γ) is a set of parameters containing both the
parameters of interest and a nuisance parameter γ. We will start to re-prove this
theorem and we then show that the definition in equation (2.46) is in agreement
with the definition of leverage scores for linear regression using the hat matrix.
The proof is straightforward and follows that of [WHF98].

Proof. We apply the chain rule to equation (2.46)

GL(a) =
∂ŷ

∂a′
∂ã(y)

∂y′

∣∣∣∣
a=ã(y)

(2.48)

We then observe that the derivative of the objective function Q(a,X,y) is 0 at
ã(y), by definition of ã(y) as the maximizing parameter.

∂Q

∂a
(a,X,y)

∣∣∣∣
a=ã(y)

= 0

We now multiply by 2, which has no effect, since the right hand side is 0. When
we then take the derivative with respect to y and apply the chain rule we get(

∂2Q

∂a∂y′
(a,X,y) +

∂2Q

∂a∂a′
(a,X,y)

∂ã(y)

∂y′

) ∣∣∣∣
a=ã(y)

= 0

46 Theory

where we have used the chain rule on the second part in the parentheses.

Reordering the parts we get

∂ã(y)

∂y′
= −

(
∂2Q

∂a∂a′
(a,X,y)

)−1(
∂2Q

∂a∂y′
(a,X,y)

) ∣∣∣∣
a=ã(y)

which we can put into equation (2.48) and get the desired result by defining
µ = E[y] = ŷ

GL(a) = − ∂µ
∂a′

(
∂2Q

∂a∂a′
(a,X,y)

)−1(
∂2Q

∂a∂y′
(a,X,y)

) ∣∣∣∣
a=ã(y)

�

We will now derive the generalized leverage for linear and logistic regression
from theorem 2.4 and hence show that this definition of the leverage scores is
in agreement with the definition using the hat matrix. In fact we will see that
we obtain the expression for the hat matrix.

2.3.1.1 Generalized leverage scores for linear regression

For linear regression the model parameter β̂ is usually found by minimizing

β̂ = argmin
β
‖y −Xβ‖22

This function matches the definition of the objective function in theorem 2.4.
Since there is no nuisance parameter in linear regression we have a = β. We
start by noting that µ = Xβ and hence(

∂µ

∂a′

)
i,j

=
∂Xiβ

∂βj

= Xi,j

We now find ∂Q
∂a (a,X,y). We start by writing Q(a,X,y) as a sum.

Q(a,X,y) =

n∑
i=1

(yi − xiβ)2

2.3 Generalized leverage score 47

We hence have (
∂Q

∂a
(a,X,y)

)
j

=

n∑
i=1

∂(yi −Xiβ)2

∂βj

=

n∑
i=1

2(−Xi,j)(yi − xiβ)

From this we obtain ∂2Q
∂a∂a′ (a,X,y) and ∂2Q

∂a∂y′ (a,X,y) by derivation with respect
to a′ and y′, respectively.(

∂2Q

∂a∂a′
(a,X,y)

)
j,k

= −2

n∑
i=1

∂Xi,j(yi − xiβ)

∂βk

= −2

n∑
i=1

Xi,j(−Xi,k)

= 2

n∑
i=1

Xi,jXi,k

= 2〈X′j ,X′k〉

(
∂2Q

∂a∂y′
(a,X,y)

)
j,k

= −2

n∑
i=1

∂Xi,j(yi − xiβ)

∂yk

= −2Xk,j

Putting all expressions together we see that

GL(ã) = X(−2)−1 (X′X)
−1

(−2X′)

= X (X′X)
−1

X′

which is exactly the expression for the hat matrix for linear regression!

2.3.1.2 Generalized leverage scores for logistic regression

We restrict our analysis to logistic regression with two classes, where class 1 has
yi = 0 and class 2 has yi = 1. In this case we choose the objective function

Q̃(a,X,y) =

n∏
i=1

pi(a,X)yi(1− pi(a,X))1−yi (2.49)

48 Theory

The objective function has to be maximized with respect to a to obtain ã,
but we can of course reformulate the objective function to make it match the
formulation of theorem 2.4. We first set everything into the denominator of
a fraction to make the problem a minimization problem. We also take the
logarithm to make the objective function a sum. We can do this because the
logarithm is a strictly monotonic function.

Q(a,X,y) = log

[
n∏
i=1

(
pi(a,X)yi(1− pi(a,X))1−yi

)−1

]

= − log

[
n∏
i=1

pi(a,X)yi(1− pi(a,X))1−yi

]

= −
n∑
i=1

log
[
pi(a,X)yi(1− pi(a,X))1−yi

]
= −

n∑
i=1

log [pi(a,X)yi] + log
[
(1− pi(a,X))1−yi

]
= −

n∑
i=1

yi log [pi(a,X)] + (1− yi) log [1− pi(a,X)]

We note that a = β and that pi(a,X) = 1
1+exp(β0+Xiβ) and (1 − pi(a,X)) =

exp(β0+Xiβ)
1+exp(β0+Xiβ) . We can hence write

Q(a,X,y) =−
n∑
i=1

yi log

[
1

1 + exp(β0 + Xiβ)

]
+ (1− yi) log

[
exp(β0 + Xiβ)

1 + exp(β0 + Xiβ)

]

=−
n∑
i=1

−yi log [1 + exp(β0 + Xiβ)]

+ (1− yi) (log [exp(β0 + Xiβ)]− log [1 + exp(β0 + Xiβ)])

=

n∑
i=1

yi log [1 + exp(β0 + Xiβ)]

− (1− yi) (β0 + Xiβ) + (1− yi) (log [1 + exp(β0 + Xiβ)])

=

n∑
i=1

log [1 + exp(β0 + Xiβ)]− (1− yi) (β0 + Xiβ)

We start by noting that the derivative of the expectation of y, E(y) with respect

2.3 Generalized leverage score 49

to a′ is exactly the same as for linear regression:

(
∂µ

∂a′

)
i,j

=
∂pi(1− pi)Xiβ

∂βj

= (WX)i,j

Next we find the derivative of Q(a,X, y) with respect to the column vector
a = β. We define Xi,j = 1 for j = 0.

(
∂Q

∂a
(a,X,y)

)
j+1

=

n∑
i=1

∂ log [1 + exp(β0 + Xiβ)]− (1− yi) (β0 + Xiβ)

∂βj

=

n∑
i=1

∂ log [1 + exp(β0 + Xiβ)]

∂βj
− (1− yi)

∂ (β0 + Xiβ)

∂βj

=

n∑
i=1

Xi,j exp(β0 + Xiβ)

1 + exp(β0 + Xiβ)
− (1− yi)Xi,j j = 0, 1, ..., p

We use this expression to find ∂2Q
∂a∂a′ (a,X, y) and ∂2Q

∂a∂y′ (a,X,y) by derivation
with respect to a′ and y′, respectively.

(
∂2Q

∂a∂a′
(a,X,y)

)
j,k

=

n∑
i=1

∂
[
Xi,j exp(β0+Xiβ)
1+exp(β0+Xiβ) − (1− yi)Xi,j

]
∂βk

=

n∑
i=1

∂
[
Xi,j exp(β0+Xiβ)
1+exp(β0+Xiβ)

]
∂βk

=

n∑
i=1

Xi,jXi,k exp(β0 + Xiβ)

(1 + exp(β0 + Xiβ))
2

=

n∑
i=1

Xi,jXi,k [pi(a,X)(1− pi(a,X))] j = 0, 1, ..., p

50 Theory

(
∂2Q

∂a∂y′
(a,X,y)

)
j,k

=

n∑
i=1

∂
[
Xi,j exp(β0+Xiβ)
1+exp(β0+Xiβ) − (1− yi)Xi,j

]
∂yk

=

n∑
i=1

−∂(1− yi)

∂yk
Xi,j

= Xk,j j = 0, 1, ..., p

Collecting all parts we have

GL(ã) = WX (X′WX)
−1

X′

with W = Diag (pi(1− pi)). This is equivalent to equation (2.36).

2.3.2 Extension to arbitrary models - stochastic simula-

tion

While the generalized leverage score is relatively simple and even analytically
defined for linear and logistic regression, the extension to arbitrary models is a
little more complicated. When defining the generalized leverage as the deriva-
tive of the predicted response with respect to the original response vector, the
computation of the derivative is not straight forward.

Imagine an arbitrary set of observations, X, and a corresponding response vec-
tor, y, with responses {0, 1}, i.e. a two-class vector. This is a common case for
many models, e.g. logistic regression and SVM. To find the derivative of ŷ with
respect to y, i.e. find the Jacobi matrix with entries

dŷi
dyj

(2.50)

we can calculate this value by altering the value yj and in the Jacobi-matrix
record all ŷi-values which change. The problem with this method is the discrete
nature of the vectors y and ŷ. When embedding these discrete vectors from
{0, 1}p into Rp and taking the limit with respect to 0, we end with an infinite
derivative. Also the embedding has no meaningful interpretation. In the original
space {0, 1}p, the derivative is not properly defined. Although we could define
dŷi

dyj
by the discrete version ∆ŷi

∆yj
for ∆yj 6= 0, we end up with data points having

a leverage score of either 0 or 1.

2.3 Generalized leverage score 51

We hence have to define the leverage score for discrete response vectors differ-
ently. We will use simulations with subsets of the data for finding an estimate
of the importance of a given observation.

We do that by finding the average change in the predicted response given a unit
change in the response of a given observation. A unit change may here be the
change of the class of the response yi or by adding a chosen real value δ to yi
if the response is continuous. Put another way, we are asking how often does
ŷj change when yj is changed. For each observation xj , we do the following k
times:

• Sample a subset of size M from the full set of observation. The sampling
is uniform and with replacement. Observation xj is added to the subset.

• Construct the corresponding sampled response vector for that subset.

• Train the model on the subset

• Find the prediction for observation xj

• Change the response for observation xj by one unit, i.e. change the re-
sponse to the opposite class, if the response is of categorical nature, or
change the response by δ, if the response is continuous.

• Retrain the model with the altered response.

• Find the prediction of observation xj .

• Store the difference between the observations predicted response.

After k iterations for each observations, we can find the mean and variance of
the absolute difference. This is our estimate for the derivative and hence the
estimated generalized leverage score.

Though this method works for all models, which can output a prediction, given
a set of observation and a corresponding response vector, the method presented
above can be very costly, since the model has to be trained and queried many
times. For large datasets, this might even be prohibitive expensive.

In figure 2.15 and 2.16 we compare our stochastic leverage scores to the hat
matrix leverage scores for linear and logistic regression. From the experiments
with linear regression we see, that we get exactly the statistical leverage. Ob-
servations further from the center of the observations are weighted higher than
those near the center. We have used δ = 1 to estimate the derivative of the

52 Theory

observations. Surprisingly we found that the choice of δ had no effect on the
estimate of the derivative.

For logistic regression, though, we found that the stochastic leverage scores are
very similar to those of linear regression and not to the diagonal elements of the
hat matrix defined in equation (2.36). Consequently the relationship between
the stochastic leverage and the hat matrix leverage is not proportional.

(a) Stochastic leverage (b) Hat matrix leverage versus stochastic

leverage

Figure 2.15: Experiments with stochastic leverage for linear regression with
n = 1000, p = 2 and k = 1000 repetitions for each observations
to estimate the leverage.

2.3 Generalized leverage score 53

(a) Stochastic leverage (b) Hat matrix leverage versus stochastic

leverage

Figure 2.16: Experiments with stochastic leverage for logistic regression with
n = 500, p = 2 and k = 100 repetitions for each observations to
estimate the leverage.

2.3.3 Example - SVM

We apply the idea outlined above to SVM. We start by generating a dataset,
using two overlapping multivariate normal distributions, where one of the dis-
tributions is displaced by a small offset in the order of one standard deviation.
The dataset has a size of n = 500 observations with 250 observations in each
class. The data used is shown in figure 2.17.

We then apply the algorithm above to calculate the generalized leverage scores.
The sample size isM = 200 and for every observation the simulation is repeated
k = 100 times. Even if these numbers are low, the process shows to be very time
consuming, since for every observation, 2k SVM-models with 201 observations
have to be trained. The process takes approx. 13 minutes on a 2.4 GHz quad-
core Intel i7 system.

We would like to compare the relationship between Support Vectors and obser-
vations with high leverage, i.e. non-zero leverage scores.

We evaluate the intersect of Support Vectors in the full model and observations
with non-zero leverage scores found in the stochastic simulation with k = 100
repetitions for every observation. Table 2.1 shows the confusion matrix for the 4
possible combinations of observations with a non-zero leverage score which are
also Support Vectors, those with a non-zero leverage score but aren’t Support
Vectors and equivalent for observations with a leverage score of 0.

54 Theory

Figure 2.17: 2-category data from two multivariate normal distributions. One
cluster is slightly displaced. The data is used for demonstrating
generalized leverage scores for SVM.

Figure 2.18: Generalized leverage scores for SVM. The overlayed colored re-
gion is an interpolation of the leverage scores. The leverage scores
are 0 for observations in the region without color.

2.3 Generalized leverage score 55

SV Not SV
Leverage > 0 125 3
Leverage = 0 481 391

Table 2.1: Confusion matrix comparing the overlap op observations with non-
zero leverage scores which are also Support Vectors (SV).

We see that there is not an overwhelming overlap. Can we expect to get a good
prediction of the optimal separating hyperplane (line) by subsampling?

If we run a SVM model only on observations which are Support Vectors in the
full model, we observe that only a subset of the observations are Support Vectors
in the smaller model and we hence probably will not obtain the same optimal
separating line in our experiments by selecting a subset of the data. When
performing the same test by using only observations with non-zero leverage
scores, we again observe that we get a different optimal separating line for the
subproblem and we hence shouldn’t expect to see a solution for the subsampled
problem that is close to the full model.

Hence what we observe is, that the SVM model, i.e. the underlying optimization
problem, is largely altered by selecting a subset of the observations. Though
many observations have non-zero leverage scores, which might suggest that they
have no influence on the outcome of the SVM model, they still contribute to
the optimal separating hyperplane and cannot be removed without altering the
solution.

Equipped with the leverage scores we will test of how much use they are. We find
the bias and variance of the slope and intersect of the optimal separating line.
Since we from figure 2.18 know that only very few observations have non-zero
leverage scores we will test 3 different weightings: Uniform sampling, sampling
with respect to leverage scores and a combination of both in a ratio of 10% to
90% for uniform and leverage scores, respectively. This ratio is the optimal ratio
for linear regression found by Ma et al. for their SLEV sampling method.

SVM has no β which we can compare, instead we will compare the slope and
the offset from the y-axis of the optimal separating line (we only experiment
with p = 2).

In figure 2.19 we show the result for subsampled experiments repeated k = 100
times for each sample size. The first column of plots shows the average bias
of the slope of the optimal separating line for uniform sampling, pure leverage
scores sampling and a combination of both, as described above. Second column
shows the variance of the slope for different sample sizes.

56 Theory

We observe the unstable behavior of the measured parameters despite k =
100 experiments for each shown data point. Especially for the methods which
involve leverage scores, no clear trend is visible. For uniform sampling, though,
a decreasing variance for higher sample sizes is observable, though the bias
still has no clear trend. We hence confirm what we discussed earlier, that
the subsampling of observations alters the optimization problem such that the
solution is different from the original problem. It looks like the average solution
is also different.

While we have been interested in the effect of leverage scores, we have to note
that the calculation of stochastic generalized leverage scores is by several magni-
tudes slower to calculate than training the full SVM-model and our generalized
leverage hence cannot be used for improving performance in terms of time, ei-
ther. Other methods for an efficient approximate training of SVM have been
developed by other authors (e.g. [CB06])

We conclude that generalized leverage in the form presented in this thesis, is
not suitable for improving the performance of the SVM model in a way similar
to the linear regression. Adding the immense computational complexity of the
approach presented here, there is no point in extending leverage scores to models
like SVM.

2.3 Generalized leverage score 57

(a) Uniform sampling - Bias (b) Uniform sampling - Variance

(c) Leverage sampling - Bias (d) Leverage sampling - Variance

(e) Combined sampling - Bias (f) Combined sampling- Variance

Figure 2.19: Bias and variance of the slope of the optimal separating line for
the subsampled SVM model. The experiments have been repeated
k = 100 times for every sample size. The combined sampling
uses 90% of the leverage score of an observation and adds 10%
uniform sampling probability.

58 Theory

2.4 Other importance measures

While leverage scores are valuable in linear regression, we saw that they are
of little use for logistic regression and SVM. From the initial discussion in the
previous section about generalizing leverage scores, we know that leverage scores
for linear regression can be viewed as a weighted distance. Using the distance
of an observation to the mean of all observations for sampling is a charming
property, since it is independent of the response vector y. And it works well for
linear regression, as we saw. But in the end of the day distance to the mean is
only one property which can be used for weighting the sampling.

We may wonder if other importance measures derived from the data alone can
give us similar results. Another property, which also can be computed from the
observations only is the average or median distance to the nearest K neighbors.
Denote the average distance from point xi to itsK nearest neighbors by xiK . We
can then define the KNN importance measure based on the K nearest neighbor
distance by

hKNNi =
xi
K∑N

i xi
K

(2.51)

where N is the total number of observations. The score is normalized, such that∑n
i h

KNN
i = 1 and it hence is a probability distribution.

In figure 2.20(a) we show a scatterplot of the GA dataset with the importance
measure defined in equation (2.51) assigned as color. The distribution of the
KNN importance measure scores is similar to that of the hat matrix leverage
scores. When we plot the KNN importance measure versus the hat matrix lever-
age scores, as done in figure 2.20(b), we observe that there is a coarse relationship
and that the KNN importance measure is biased, since the mean distance to
the K nearest neighbors is strictly positive, while the leverage scores can be 0
for an observation exactly at the observations’ mean. We could expect this in
some cases to be an advantage for our KNN importance measure. As discussed
earlier, Ma et al. have shown that their SLEV sampling method, which uses a
combination of uniform and leverage sampling, works better than the traditional
LEV method, which only uses leverage scores as weights. A non-zero bias of
the KNN method hence ensures a non-zero weight for all observations, which is
equivalent to adding a small offset to the leverage scores.

We observe that the GA dataset we use has a higher observation density, and
hence a smaller average distance between observations, at the center and respec-
tively a longer average distance at the outer edge of the distributions. In figure
2.20 we show the scores of our KNN method and compare it to the leverage
scores. We see a high similarity with the leverage scores, though it is not com-

2.4 Other importance measures 59

pletely proportional. We still might expect to see a similar performance of our
KNN method compared for unconditional experiments, i.e. a varying response
vector y in all experiments. Let’s see how our importance score performs.

(a) KNN importance scores for GA dataset (b) KNN importance scores versus hat ma-

trix leverage scores

Figure 2.20: Visualization of KNN importance scores for the GA dataset.

We perform the same experiments for the bias and variance, similar to those
presented for linear regression and the hat matrix leverage scores in figure 2.4.
The results for our KNN importance measure are shown in figure 2.21. We have
reweighted the samples according to that discussed in section 2.2.2.1, since we
otherwise observed that our KNN-method did not converge to neither β̂OLS nor
β0 in conditional and unconditional experiments.

We learn from this, that hat matrix leverage scores are only one approach to
the weighting of observations. They work well for the artificial data used in this
chapter, but we also saw that for data without extreme outliers with significant
higher leverage scores than the rest of the observations, the difference between
uniform sampling and sampling with respect to leverage scores does not differ
significantly in terms of bias and variance. This is in agreement with the results
found by Ma et al. in section 5.3 of [MMY13], when applying leverage scores
to real data. Though they find a slightly better variance for a dataset of cancer
patients’ genes with skewed leverage scores, the difference is minor and only
becomes evident for a moderate number of samples, which is not the result
we saw in the experiments with artificial data, where sampling with respect to
leverage scores performed significantly better for even small sample sizes.

By using a little knowledge about the data, we can hence build importance mea-
sures especially designed for our tasks. We will design customized importance
measures in the applications in chapter 4. A very obvious importance measure
for images is the use of the gradient magnitude when sampling patches, or, as

60 Theory

we do in section 4.6, reconstructing the video from random samples.

Other importance measures have been developed. One example is Cook’s dis-
tance.

Cook’s distance In a pursuit to develop new measures for outlier detection
Dennis Cook developed a distance measure known as Cook’s distance or Cook’s
D which compares the least-squares estimate for the regression parameter β̂
and compares it to the least-square estimate β(−i) where the ith observation is
removed from the dataset. In [Coo77] he shows the relation of his measure to
the studentized residuals ti and the variance in the predicted values V ar[ŷ] and
the residuals V ar[R]. He shows that

Di =
t2i
p

V ar[ŷi]

V ar(Ri)
(2.52)

or in terms of the hat matrix diagonal elements hii

Di =
t2i
p

hii
1− hii

(2.53)

Here t2i is the square of the ith studentized residual given by

ti =
yi − xiβ̂

s(1− hii)
(2.54)

where s is the square root of the mean square error (MSE).

2.4 Other importance measures 61

(a) GA (b) GA

(c) T3 (d) T3

(e) T1 (f) T1

Figure 2.21: Comparison of the bias and variance behavior for uniform sam-
pling of the GA, T3 and T1 datasets and sampling with respect
to our KNN-importance measure. The experiments are uncon-
ditional, i.e. a new response vector y is computed for each ex-
periment.

62 Theory

2.5 Random projections

A modern tool for data reduction is random projections, which is, contrary to
the subsampling methods we have looked at previously, a method for reducing
the feature dimension. The idea is to project all observations from a high-
dimensional space onto a lower dimensional space while the distance between
observations is approximately preserved.

Random projections is a key tool in the field of compressed sensing (see [CW08]),
which tries to establish new, probabilistic, bounds for the required sampling
rates of data especially audio, images and hence also video. Traditionally Shan-
non’s sampling theorem has been used for making decisions about the sampling
rate. The theorem states that a sampling rate of at least double the high-
est frequency of the signal is needed for a perfect reconstruction of the signal.
The surprising result for random projections and a technique called Restricted
Isometry Property (RIP) presented in [CW08] is a set of general deterministic
results which can be obtained for the exact reconstruction of sparse signals. One
example is given in the section ”Undersampling and sparse signal recovery” of
[CW08].

The experiment presented is sampling of wavelet coefficients. Usually only a
few coefficients are significant for the reconstruction of the original signal and
hence it is of interest to sample only the significant coefficients, but it’s not
known which coefficients are significant. One of the results presented by Candès
et al. is a lower sampling bound at which an exact reconstruction of the signal
is obtained with a probability of more than (1 − ε). An exact reconstruction
is often a surprising result, especially if it is generally applicable under a few,
weak conditions.

The initial work for random projections comes from Johnson and Lindenstrauss
in [JL84], where they derive probabilistic bounds for the distance distortion
under random projections.

We will here, without proof, present results for random projections. A proof for
theorem 2.6 below is found in the seminarial material [Lib07] by E. Liberty.

We start by defining the projection matrix:

Definition 2.5 Let X ∈ Rn×p be a data matrix with n observations and let
dfull = p be the dimension of the number of features (columns) of X. We define
the random projection matrix R, which projects X onto the space Rn×d, by

Rij ∼ N (0, 1), i = {1, ..., dfull}, j = {1, ..., d} (2.55)

2.5 Random projections 63

The lower dimensional data matrix is then found by

XRP =
1√
d

XR (2.56)

The following theorem, known as the Johnson-Lindenstrauss lemma, states the
probabilistic bound on the pairwise distance distortion of observations.

Theorem 2.6 For the setup in definition 2.5 and 0 < ε ≤ 1
2 and if

d >
9 ln(n)

ε2 − ε3
(2.57)

it holds with a probability of more than 1− 2e−
d
4 (ε2−ε3) that

‖xi − xj‖2(1− ε) ≤ 1√
d
‖xiR− xjR‖2 ≤ ‖xi − xj‖2(1 + ε) (2.58)

It turns out that several bounds for the random projections dimension have been
established with varying probabilities. We will study how tight the bounds used
by E. Liberty are.

The probability of the bound in theorem 2.6 is overwhelming, but we were
wondering how tight the lower and upper bounds are. We tested the bound
by using a dataset of size 1000 × 10000, generated from a multivariate normal
distribution with the same settings as the GA dataset used in section 2.2.2.

According to theorem 2.6 the dimension for a distance distortion of at most
10%, ε = 0.1, would have to be

dmin >
9 ln(1000)

0.12 − 0.13
≈ 6908 (2.59)

For different values of d we generated the random projections matrix R and
for all pairs of observations found the distance in the projection space, finally
dividing it by the original distance. We found that the ratio of the approximated
and the original distance is normal distributed in our experiment. In order to
compare the theoretical bounds with the data, we found the minimum and
maximum ratio and the first standard deviation on both sides of the fitted
normal distribution. We also found the corresponding ε for each dimension d.
All these parameters are shown in figure 2.22.

We observe that the experimental results for the standard deviation and mini-
mum and maximum distortion nicely follow the theoretical bounds (ε) and that

64 Theory

Figure 2.22: Distance distortion caused by random projections onto projec-
tion spaces of different dimension. We compare the experimental
minimum, maximum and first standard deviation of the ratio of
approximated distance divided by the original distance between
observations. The theoretical bounds from theorem 2.6 are also
shown.

2.6 SIFT-features 65

they are not exactly tight. The theoretical bounds are several σ away from the
mean value of 1 and approximately 3 times the minimum and maximum values
found in our experiments. This indicates that we might be able to project data
onto a much lower dimensional space and still obtain good results.

2.6 SIFT-features

In the applications presented in chapter 4, ”Experiments and results”, we will
use many different image features, like mean intensity, gradients and distances
between frames. One feature, though will be used over and over again and is a
common feature in many state-of-the-art image algorithms. Our new friend is
called Scale Invariant Feature Transform and is described in the original article
[Low99] and a follow-up article [Low04] by David Lowe.

The overall idea is to extract keypoints from the image, find the most prominent
gradient direction and the coarseness (scale) of the structure for each keypoint.
Then place a 4x4 grid at the keypoint and rotate it according to the most
prominent gradient direction and scale it according to the detected coarseness.
For each field in the 4x4-grid determine the gradient magnitudes in 8 different
directions. Since the grid is initially rotated with respect to the largest gradient
and scaled with respect to the local coarseness, the gradient magnitudes in the
16 grid-fields will be the same if we look at the same keypoint, even if the image
has been rotated and scaled.

The SIFT-feature algorithm has two structures, SIFT-detectors and SIFT-descriptors.
SIFT-detectors hold information of the location, scale and orientation of a par-
ticular SIFT-feature. SIFT-descriptors hold the gradient-informations from the
4x4 grid. The SIFT-descriptors are 128-dimensional vectors, holding the bin
sizes of the 8 gradient bins for each of the 16 fields in the 4x4 grid. An example
of a SIFT-descriptor is shown in figure 2.23, where we both see the 4x4 grid
and inside each field 8 lines pointing in different directions. The length of each
line is related to the number of pixels with this particular gradient orientation
(±π8 rad).

Let’s look at an example. In figure 2.24 we have a patch showing a box, which is
also present in the image to the right, just in another orientation and size (the
patch is here shown in a different scaling). SIFT-features are then extracted
from the patch and the full image and by using a matching algorithm similar
SIFT-features are detected. The matched SIFT-features are shown in figure
2.25(a), where we see that many SIFT-features have been extracted from the
patch and the full image. From the position of the SIFT-features we see where

66 Theory

Figure 2.23: SIFT-descriptor. It consists of a 4x4 grid. Each field contains a
8-bin histogram of the gradient directions in this field.

the box is located and at which orientation.

We take a closer look at one SIFT-detector. Have a look at figure 2.25(a) again.
We notice the little green line inside the circles, which indicates the direction of
the biggest gradient. Note that the orientation of the line is the same relative
to the box for the patch and the full image. This has the effect that the 4x4-
grid, which we show in figure 2.25(b) covers the same region of the box and the
gradient-bins in each field will hence be similar.

The matching algorithm which is used for matching SIFT-features uses the dis-
tance between two SIFT-descriptors, which are as noted before, 128-dimensional
vectors. The matching algorithm does not allow several SIFT-features from one
image to be matched to the same SIFT-feature in the second image.

We refer to the original work by Lowe [Low04] for details of the matching process.

While matching of image regions works well if a near-perfect representation of
the object we are searching for exists, the matching does work poorly when the
relationship between the images is not affine. In the example above we had
extracted the box from the full image which we then searched. The boxes in the
patch and in the full image are hence perfect matches. From the construction of
SIFT-features, which are scale and rotational invariant, we conclude that we will
almost always find the objects if there is an affine transformation for mapping the
patch of the searched object into the full image, even under partial occlusion. As
soon as the required map is not affine, the SIFT-features will perform poorly.
Though, since SIFT-features only use small regions of the images, it is often

2.6 SIFT-features 67

Figure 2.24: Patch and image for demonstration of SIFT-features. The patch
to the left is extracted from the full image, rotated and scaled.

enough if at least a few parts of the patch/object can be mapped to the full
image by an affine transformation.

An alternative to SIFT-features are random ferns, presented in [OCLF10], which
by the article are reported often to be a little more densely distributed in im-
ages and a little more robust to distortions. We have not tested random ferns
ourselves and will not use them.

68 Theory

(a) All SIFT-detectors

(b) SIFT-descriptor for one SIFT-detector

Figure 2.25: Illustration of SIFT-features for the patch and image shown in
figure 2.24. The location of the matched SIFT-features in the full
image reveal the location of the box in the full image. (b) shows
one of the SIFT-descriptor. Note the different orientations of the
SIFT-descriptors, which does all the trick for detecting similar
image regions, regardless of scale and rotation.

2.6 SIFT-features 69

2.6.1 Computational complexity

We conclude by determining the relationship between the computation time of
SIFT-features and the size of the image. We also study the relationship between
computation time for matching SIFT-features and both image size and number
of extracted SIFT-features. The dependencies were studied by using a template
image with high quality and many details (an image of Time Square in New
York) which was rescaled to a given percentage of it’s original size. We have
used steps of 5% for scaling the image, such that 20 data points were collected
ranging from a scale of 5% to 100%. Here scale refers to the scaling of height
and width of the image, which in turn means a square relationship between
scaling and image area / pixel count. In the experiments this relation became
clear and hence the figures below show the square root of the computation
time to achieve a linear relationship. The result for the square root of the
computation time versus the scale is shown in figure 2.26 for the calculation of
SIFT-features. We see that the square root of the computation time for SIFT-
features is proportional to the scale, i.e. the computation time is proportional
to the pixel count.

The SIFT-features (detectors and descriptors) were calculated and matched by
using the VLFeat toolbox [sp].

For studying the computational complexity of SIFT-feature matching we ex-
tracted a fixed patch of 500x750 pixels from the middle of the original image
and calculated the SIFT-features for it. For the same scalings as before (5% to
100%), we first calculated the SIFT-features for the scaled image (done before
starting the clock) and then matched the patch’s SIFT features with those of
the scaled image. For stability this was done k = 20 times. The result is shown

Figure 2.26: Square root of the computation time for different scales of a tem-
plate image.

70 Theory

in figure 2.27(a) where the square root of the computation time is plotted ver-
sus the scale of the image. We see a linear relationship, which means that the
computational complexity depends linearly on the pixel count. We expected
that this conclusion is only half of the truth, since the matching is not directly
dependent on the pixel count of the image, but on the number of detected SIFT-
features instead. The number of SIFT-features is linearly dependent on the pixel
count (not shown) and we hence show in figure 2.27(b) that the computation
time for the matching of SIFT-features is linearly dependent on the number of
SIFT-features in the image. Note that the real computation time is shown and
not the square root of it for the last figure.

(a) Square root computation time versus

scale

(b) Computation time versus SIFT-feature

count

Figure 2.27: Computational complexity for SIFT-feature matching with respect
to the image scale and SIFT-feature count. Note that in (a) the
square root of the computation time is shown, while the direct
computation time is used in (b).

We conclude that the goal for our applications will be to reduce the pixel count
of the images and patches on which SIFT-feature matching is performed.

Chapter 3

Data

Next we present the video data used in our experiments.

3.1 Naming conventions

Let’s make clear what we mean by different terms in the text below:

• Cut: An intended abrupt change in the visual appearance of a video
sequence caused by the shift to another camera or interruption of the
recording. Smooth transitions, like fading do not count as abrupt change.

• Frame: One image that makes up a part of a video sequence.

• Frame shift: A pair of adjacent frames. Cuts are located at frame shifts.

• Scene: A video sequence bounded by two cuts (or the start or end of the
video)

• Scene category: A number of scenes (possibly one) shot from a specific
camera position (possibly moving) and in a specific location. A moving
camera, which follows an object is regarded as a scene category.

72 Data

• Location: A geographically bounded space with distinct characteristics.
Examples are ’living room’, ’alleyway’ and ’forest’.

A movie is most often divided into scenes which can be sorted into scene cate-
gories, describing the camera settings and location. A scene category can hence
consist of several scenes. A simple example is a soccer game, where the game
most of the time is shown from a side view at a high point over the field. This
is one scene category. Sometimes slow motions are shown from a camera closer
to the field and sometimes close-up shots from the audience are shown. These
are scene categories as well. In a sports broadcast there often is a 1:1 corre-
spondence between scene categories and the available cameras. An operator can
then cut back and forth between the cameras/scene categories. Each time the
operator makes a cut, a new scene starts and the previous ends.

3.2 Data characteristics

A movie, stored as grayscale, with width w, height h and frame count L can be
modeled as a L×wh matrix. For a 10 minutes full High Definition video with 25
frames per second the parameters are w = 1920, h = 1080 and L = 15000. The
raw matrix hence has 3.11 ·1010 entries, which with 1 byte intensity information
for each entry corresponding to 29 GB of data, which clearly is a large scale
dataset.

The data matrix is dense.

3.3 Movies used

We use two movies for our analysis.

Zelotypia This movie is 9 minutes and 24 seconds long and made by Franco
Marco Avi and is publicly available on the video platform Vimeo1. The movie
comes with desaturated colors and hence little information is lost by using a
grayscale version of it.

We use 1 minute of the movie, showing the main character, a young woman,
on her way to the bus stop and riding the bus. The sequence is divided into

1http://vimeo.com/63837640

3.3 Movies used 73

Figure 3.1: Summary of the 10 scenes in the 1 minutes sequence of the short
film ”Zelotypia”.

10 scenes, summarized in figure 3.1. The characteristics of the scenes are very
different. In the first scene the camera follows the woman while walking. The
camera is hand-held and hence shaky. The second scene is filmed from a tripod
and the camera is static. Other scenes are filmed from a tripod combined
with panning and zooming. The texture characteristics of the image changes
dramatically between scenes. Some scenes, like the first, have large variations
(leafs and branches), while other scenes are smooth and without big variations,
like the last scene with the woman’s head (black) and a light background.

The original frame size is 1920 x 818 with 50 interlaced half-frames per second.

Bang! You’re dead ”Bang! You’re dead” is an Alfred Hitchcock episode
from 1961. A 6:31 minutes sequence from the episode has also been used in
[PK13]. We use the first 2 minutes of this sequence in our analysis. The first 2

74 Data

Figure 3.2: Summary of the 9 scene categories in the 2 minutes sequence of
the short film ”Bang! You’re dead”.

minutes show the main character Jackie, a boy approx. 8 years of age, who likes
playing with guns. He has it’s own toy gun, but by searching his uncle Rick’s
luggage for a surprise present, he finds a real gun, which Jackie picks up and
replaces with his own gun. He also finds bullets, which he puts into his pockets,
but unfortunately there is not room for the last bullet, which he chooses to store
in the guns cylinder. He spins the cylinder before putting it back into his holster
and going to the living room.

The camera motion is dominated by static cameras and operation from tripod.
Moderately many cuts replace the camera motion. The 2 minutes sequence we
are going to use in the scene categorization is divided into 32 scenes distributed
across 9 different scene categories, summarized in figure 3.2.

During the 2 minutes 31 cuts are made. The full 6:31 minutes video sequence
has 52 cuts and hence 53 scenes. One of the cuts is a fade and hence not a cut
in our definition and not counted when performing cut detection.

The frame size is standard PAL resolution: 720 x 528 with 25 frames per second.

3.4 Data representations 75

3.4 Data representations

Using the full resolution and frame rate of the video sequences is hard to work
with, because the uncompressed data easily overflood the memory of MATLAB
and other programs. We hence performed a deterministic downsampling. When
not mentioned otherwise, the resolutions of the frames is downscaled by a factor
2, i.e. half the width and height. The frame rate is also downsampled to a
frame rate of approx. 8 frames per second (every 3rd frame). This frame rate
is typical for low-budget stop-motion videos. The human eye can still easily
detect motion at this frame rate, which is also supported by research for an
optimal frame rate for CCTV. In their article ”To Catch a Thief – you need at
least 8 frames per second: The impact of frame rates on user performance in a
CCTV detection task” [KS08] Keval and Sasse from University College London
find that the human action recognition is still good at 8 frames per second and
drops sharply for 5 frames per second.

The overall rationale for the downsampling was ”if the human action recognition
is still intact, the resolution is also sufficient for image/video analysis”. In fact
a lower image resolution may be beneficial, since the important image parts are
still sufficiently represented while the not as important details are averaged out.

76 Data

Chapter 4

Experiments & results

The purpose of this chapter is to present several experiments which have been
conducted to show different aspects of the theory discussed and show new ap-
proaches to somewhat arbitrary methods stumbled upon during the search for
literature. Each of the experiments presented below deal with a specific aspect.

Cut detection Comparison of random projections to previous
approaches

Scene categorization Present SIFT-feature matching methods and
compare to random projections

Camera motion detec-
tion

Further applications of SIFT-features

Motion-based object
extraction

Further application of SIFT-features and au-
tomated region of interest selection

Linearity measure Application of leverage scores and subsampled
linear regression

Video compression Studying the effects of different importance
scores

78 Experiments & results

4.1 Cut detection

4.1.1 Experiment description

We used the 1 minute long sequence from the Zelotypia short film to train and
validate techniques for the detection of scene shifts (cuts). A few were then
tested on the full video sequence from ”Bang! You’re dead”. The following
methods were tested

• Intensity change per pixel All pixels were monitored for intensity
changes above a given threshold, called the difference threshold. If a given
amount of pixels, called the cut threshold, are above the difference thres-
hold a cut is detected.

• Frame characteristic A frame characteristic is computed by dividing
the frame into 4 quadrants and finding the mean and variance of the
intensities in the 4 quadrants. The means and variances is compared
between frames and a cut is detected if the difference exceeds a given
threshold (cut threshold). This method is inspired by the concept of shape
context described by Belongie et al. [BMP02].

• SIFT-feature count SIFT-features are used to find matching keypoints
in two adjacent frames. The number of matched SIFT-features is used to
detect cuts. Both a constant and two adaptive thresholds are used.

• Random projections We downscale the frames to a size of 30× 40 and
vectorize them. We then find the Euclidean distance between two adjacent
frames and use the distance information to detect cuts.

For all of these methods the goal has been to evaluate their performance on
the full frames and then perform a (weighted) subsampling of observations or
features and show the performance difference compared to the full data model.
For the intensity change approach we will deterministically sample pixels and
perform the intensity change analysis on this subset.

For the frame characteristic approach it is already in-build in the method to
sample a few pixels for each quadrant, but we found in the experiments that the
method did not work as expected and is hence only included for completeness.

For the SIFT-feature approach we will select uniformly distributed patches of a
fixed size from the image and use a weighting based on the variance/contrast of
the patch to select a subset of patches. We then try to find the corresponding

4.1 Cut detection 79

region of the patch in the adjacent frame. Since video is slowly changing, some
of the patches are assumed to be found in the adjacent frame, unless there has
been a cut, where no or very few patches find a match.

For the frame distance / random projections approach, where we vectorize a mini
version of the frames and find the Euclidean distance, we test both the full L×L
distance matrix and a random projection of it. Random projections can heavily
reduce the dimension of the feature space of a dataset while approximately
preserve the Euclidean distance between points (up to a constant). We will
apply random projections to the dataset of vectorized frames and reduce the
dimension from 1200 dimensions down to d9 ln(2943)e = 72 for the full ”Bang!
You’re dead” video sequence. While this bound violates the traditional bound
used in random projections, we will see that our method will work either way,
though the 16.7x dimension reduction is high.

4.1.2 Results

When evaluating the performance of our 4 methods (plus experiments with
adaptive thresholding for SIFT-features) we will compare it to the results ob-
tained by Robles, Toharia, Rodriges and Pastor in [RRC+04], who report recall
rates of well over 80% and precision up to 90% by using modified histogram
differences and an adaptive threshold. We do not have nearly as much video
data to test our approaches on as Robles et al. have, who tested on 61 video
sequences with 755 cuts. We keep in mind, that our main purpose is to test the
effect of subsampling the video. We use the 1 minute sequence from Zelotypia
for training and the full 6:31 minute sequence of ”Bang! You’re dead” as our
test environment. The latter contains 52 cuts.

4.1.2.1 Intensity change

The intensity change approach is straight forward. We find the difference of two
adjacent frames and determine the number of pixels above a threshold Thd. If
the number of pixels above that threshold crosses another threshold Thc, a cut
is detected. We hence need two thresholds for this method, though we will later
discuss a more adaptive approach in section 4.1.2.4.

In figure 4.1 we show the number of pixels above threshold Thd = 20 (we
used this threshold in all experiments) for the 1 minute video sequence from
Zelotypia. We define Thc to be a percentage of the total pixel count, to make
it comparable across different video sequences. From the Zelotypia video we

80 Experiments & results

Figure 4.1: The number of pixels with a difference greater than the difference
threshold Thd. The red horizontal line is the chosen cut threshold
Thc. 7 peaks are above the threshold.

determine the best value for the cut threshold to be Thc = 0.4 by using the
F1-score, defined by

F1 = 2
precision · recall
precision + recall

(4.1)

We tested the cut detection results for thresholds Thc between 5% and 100%.
The F1-score was highest for values between 30% and 40% of the total pixel
count.

We then applied this threshold to the our test video ”Bang! You’re dead”. We
found a precision of 78% and a recall of only 57%. We also tested an adaptive
threshold which we present in section 4.1.2.4 and call observation-exclusion-
threshold, which compares the local mean of the difference data with and without
the current difference data point. This method also needs a threshold and we
found again a high F1-score for thresholds between 35% and 45% and settled
with 40%. The result on the ”Bang! You’re dead” video sequence was a precision
of 93% but again only a recall of 51%.

We repeated the experiments where we only used a few sample points, sampled
from a regular 30x30 grid. In exactly this example there is no point in using a
random sampling, since we get a better overall picture by making sure that the
image is evenly covered with sample points, while randomness is characterized
by an uneven distribution with clusters (since also the distance between random
points is random).

We repeated the training of the thresholds with the ”Zelotypia” sequence, but

4.1 Cut detection 81

found a similar result for the F1-scores and we hence keep using 40% for both
the simple cut threshold and the threshold used in our observation-exclusion
threshold. The tests with the ”Bang! You’re dead” sequence showed a 70%
precision and 54% recall for the simple threshold Thc discussed in this section
and a precision of 93% but only 54% for the adaptive observation-exclusion-
threshold.

We can conclude that the adaptive threshold works better than our simple
threshold for high-difference pixels. We also conclude that the 30x30 grid of
sample points is completely sufficient for cut detection and has a performance
similar to using the full frames. We have not tested what the minimum number
of sample points has to be in order to obtain a cut detection similar to the
full data. We expect that the number of sample points could even be reduced
further.

A last note on the computation time: The analysis of the full 6:31 minute
sequence with 2943 frames takes 28 seconds when using the full frame and only
1.0 second for the 30x30 grid of sample points.

4.1.2.2 Frame characteristics

Belongie et al. presented in [BMP02] a method for matching points of two
similar structures by comparing a concept called shape context, which captures
the position of the other points relative to the current point. We tried to transfer
this idea to whole images, though not exactly in the way Belongie et al. did
it for points. We only look at the center of the image and compute the mean
and variance of the intensities for all four quadrants. We call this the frame
characteristics. We then compare the mean and variance for adjacent frames
and find the difference of all 8 value pairs (4 mean pairs and 4 variance pairs).
The total difference serves as feature, to which the threshold is applied.

The difference of the frame characteristics is shown in figure 4.2. None of
the cuts are detected, but 6 false positives are found.

The method was then changed by only using 100 sample points in each quadrant
for finding the mean and variance. The number of cuts detected and false alarms
depends on the randomly sampled pixels in each quadrant which are used to
calculate the frame characteristics. The result was, as it could be expected from
the results in figure 4.2, that this didn’t work.

Since the results were not convincing in our tests, we did not study this method
further.

82 Experiments & results

Figure 4.2: Difference of the frame characteristics. The red horizontal line
indicates the chosen cut threshold.

4.1.2.3 SIFT-feature count

When using SIFT-features to recognize corresponding point between two images,
they are matched by a thresholding algorithm, which compares the difference
between SIFT-descriptors and uses a threshold to detect matches. For similar
images there should be a high percentage of SIFT-features which are matched,
while there are few between images not similar to each other. The displacement
of corresponding points inside a scene is expected to be similar for most points.
For frames from two different scenes the displacement has no pattern. We can
use this fact to detect cuts.

In our experiments we solely depend on the number of matched SIFT-features
and disregard the displacement. Instead we use the displacement for other
exciting stuff in section 4.3 and 4.4 below.

We illustrate the idea in figure 4.3, where we show two successive frames and the
matched SIFT-features. We see a large number of matched SIFT-features, and
the displacements between the matches being equal, such that the blue lines,
which connect the matched SIFT-features, are parallel.

On the other hand, by looking at figure 4.4, where we show a scene shift, with
the frame from the previous scene on the left and the new frame on the right,
we clearly see a much smaller number of matched SIFT features and the dis-
placement has no pattern.

In figure 4.5 we can see the effects even clearer. Plot (a) shows the absolute

4.1 Cut detection 83

Figure 4.3: SIFT-feature matching for two successive frames of a movie.

Figure 4.4: SIFT-feature matching at a scene shift.

number of matches between frame i and (i − 1). We see the sharp drop or
rise of matches at each scene shift (marked by red vertical lines). This is made
even clearer in plot (b), which shows the absolute difference of matches between
frame (i − 2) and (i − 1) and between frame (i − 1) and i. There are sharp
peaks where the scene shifts occur. We have to note, that a big difference of
matched SIFT features can occur twice at a scene shift. We can see this from
the following example:

Let frame 1 and 2 be in the same scene and frame 3 and 4 in another. There
will be a high number of SIFT-feature matches for frame 1 and 2 and for 3 and
4. For simplicity let the number of matches for each of these two pairs be 100.
Now frame 2 and 3 are in different scenes and there hence are few matches,
say 10. The absolute difference of matches for frame 1 and 2 and frame 2 and
3 will now be 90. The absolute difference of matches for frame 2 and 3 and
frame 3 and 4 will also be 90. We hence have two times an absolute difference
of matches of 90. We have to select one of these. From experiments we found
that not always both differences are above the set threshold and hence we have
to do the following:

• If two successive differences are above the threshold: Select the first as
scene shift location

• If only one difference is above the threshold (peak) inspect the differences
before and after the peak

– If the difference before the peak is greater than the difference after
the peak, use the difference before the peak as scene shift location

– otherwise use the peak as scene shift location.

84 Experiments & results

(a) Absolute count

(b) Di�erence

Figure 4.5: (a) Absolute count of SIFT-feature matches of adjacent frames in
the Zelotypia video, (b) The absolute difference of SIFT-features
of adjacent frames.

4.1 Cut detection 85

The computation time for the full ”Bang! You’re dead” sequence is 1008 seconds,
which is long, compared to the intensity difference method presented above. We
present the detection results in the next section about the adaptive threshold,
which we used for detecting cuts.

Using patches In order to reduce the computational complexity, we tried to
select a few (3-8) patches from each frame and match it to the next full frame
by using SIFT-features. As we saw in section 2.6.1, the computation time is
linearly dependent on the number of SIFT-features and depends indirectly on
the pixel count. By choosing a few samples with a total pixel count less than
the full frame, we should be able to improve the computation time.

We used the 1 minute sequence from ”Zelotypia” for the following experiments.

The overall procedure we used is the following: For all frames define a number
nCP of patch locations per frame (CP = candidate patches). In our experiments
we used nCP = 20. For each frame we extract these nCP patches and find the
variation of these patches, i.e. the variance of the intensities. We use the
variation as an importance measure to put a higher weight on patches with high
variance. The rationale is to discard patches from regions with uniform intensity
and prefer patches which are more likely to contain significant keypoints, which
will result in more SIFT-features.

By using the variation importance measure, we sample nP patches, for which
we extract SIFT-features. In the experiments we used nP = 6. For each patch
we match it to the next full frame and count the number of matches. The match
count is summed for all patches and serves as our new frame similarity measure.

The experiments showed that this method, based on the SIFT-feature count of
matched patches, performs considerably worse than matching the full frames.
For 6 patches with a side lengths of 30% relative to the full frame, corresponding
to a total pixel count (for all patches) of 67% of the full frame, computation
time was decreased by approximately 25% (74 seconds versus 98 seconds), but
at the cost of precision which dropped to 5

7 and the recall which dropped to 5
9 .

Reducing the patch size or count decreased the performance even further.

4.1.2.4 Adaptive threshold

We have already mentioned adaptive thresholds for the intensity difference
method and will now present these thresholds together with their performance
for the SIFT-feature count method presented above.

86 Experiments & results

We found in the experiments above that the detection of cuts works well with
a constant threshold, defined by

tconst = 0.0019 · w · h (4.2)

where w is the width of the frame and h is the height. The constant of 0.0019 was
found by looking at the difference of SIFT-counts for the ”Zelotypia” sequence.
We could see that 200 was a good threshold. Since we know from section
2.6.1 that the SIFT-feature count is linear proportional to the pixel count, we
generalized the method by choosing the value such that it computes to 200 for
”Zelotypia”.

The constant threshold, when applied to the SIFT-feature count method, re-
sulted in a precision and recall for the ”Bang! You’re dead” video of 46% and
53%, respectively, which is a bad result compared to our intensity difference
experiments.

To make our threshold more general and hence less dependent on representative
training data, we tried two adaptive thresholds for finding scene shifts. The
advantage of an adaptive threshold is that we can avoid a high number of false
cut detections in scenes with high variation, e.g. camera shakes or fast movement
close to the camera, while being able to detect true cuts in other video data
without retraining.

The first method uses the mean and variance of previous frame shifts. The
second method is inspired by a windowing method used in [RRC+04], which
uses the average difference around the frame shift in question and multiplies
it by a gain factor. The method we are going to use is a modification of the
windowing method and is inspired by Cook’s distance, where the influence of an
observation is measured by calculating the change of a given property, e.g. the
mean, when the observation is included or excluded. We are going to compare
the mean difference for a window around frame shift i with and without the
shift. Since a cut is characterized by a large change in the intensities and SIFT-
feature count, we expect the mean to be significantly higher when including the
frame shift compared to excluding it. In the end we need a threshold again to
determine when the difference of the means is high enough for detecting a scene
shift.

Threshold based on mean and variance of previous frame shifts The
threshold based on the mean and variance of previous frame shifts was chosen
to depend on the average number of SIFT-matches from the last 10 frames.
For the first 10 frames the threshold was chosen to be the constant threshold
tconst. After 10 frames the adaptive threshold is defined by the average number

4.1 Cut detection 87

Figure 4.6: SIFT-difference for cut detection with an adaptive threshold using
the mean and variance of previous frame shifts.

of SIFT-matches and the variance of SIFT-matches by the formula

tadapt = 2.5mean(SIFT −matches) + 3
√

var(SIFT −matches) (4.3)

The SIFT-match difference with an adaptive threshold is shown in figure 4.6.

We found for this method that the precision for ”Bang! You’re dead” was 74%
and the recall 82%. This is not overwhelming, but the recall is better compared
to the intensity difference results and much better than the results for SIFT-
feature count with constant threshold.

Observation-exclusion-threshold The second threshold works by first find-
ing the difference data for each frame shift for the method of choice, e.g. the
difference of SIFT matches or the intensity difference. We then select a window
size η. The idea is now to find the mean of the difference data for a window of
width 2η + 1 centered at a given frame shift (the analysis is not done for the

88 Experiments & results

first and last η frame shifts). The mean is first found including the frame shift
in question and then without it. The two means found can now be compared
and if the difference of the means is above a fixed threshold (or an adaptive
threshold like the one discussed before) a cut is detected. The rationale is, that
cuts are characterized by peaks in the difference data and hence the mean is
significantly different if the frame shift, at which the cut is located, is excluded
from the difference data. This method still needs an additional threshold and
hence is more a way of emphasizing the peaks prior to thresholding. We normal-
ized the threshold by letting it be a percentage of the maximum peak height,
i.e. if the highest peak has a value of 100 and the threshold is 40%, all peaks
above a value of 40 are detected as cuts.

We already reported on the results for this threshold for the intensity difference
experiments, where the observation-exclusion threshold works well. For the
SIFT-feature count experiments on the full frames we found a low precision of
45% and a recall of 51%. Both values are less than overwhelming.

The method is presented for an example in the next section where we use random
projections.

4.1.2.5 Random projections

Finally we demonstrate the application of frame distances and random projec-
tions for cut detection.

We start by vectorizing the L (=frame count) frames by rescaling them to a size
of 30× 40 and vectorizing the mini-frames by stacking the columns. The size is
chosen arbitrarily but showed to deliver good results and works well for video
with 4:3 aspect ratio, but also works for other aspect ratios. The data is stored
in a L× 1200 matrix X.

We treat each frame as a 1200-dimensional vector and study the effects of using
the frame distance. We train the method on the video sequence from Zelotypia,
which includes finding a good threshold distance for detecting cuts and a good
random projections dimension. After having determined the best settings for
threshold and random projection dimensions we apply the method to ”Bang!
You’re dead”, which we use as test data.

We start by building a distance matrix, which has the value of Euclidean dis-
tance of frame i and j at element (i, j). The full matrix is shown in figure
4.7. From the matrix we observe clear patterns of separation between frames in
horizontal and vertical direction. We especially note the blue squares close to

4.1 Cut detection 89

Figure 4.7: Distance matrix of frames in the 1 minute video sequence in ”Zelo-
typia”.

the diagonal, which show a low distance between frames within the same scene.
We will use this in the next section. For now we note that the distance between
adjacent frames is shown in the first bi-diagonal of the distance matrix. The
distance between frames is shown in figure 4.8. We note the high similarity
to the plot for intensity difference (figure 4.1) and SIFT-feature count (figure
4.5(b)). We determine the location of cuts by using the observation-exclusion
method discussed in the previous section about adaptive thresholds, i.e. we

• find the mean distance between frames in a window of size ±η around
frame i, including the difference of frame i and i+ 1

• find the mean distance between frames in a window of size ±η around
frame i, excluding the difference of frame i and i+ 1

• Find the difference between the first and the second mean. If it is positive
and above a threshold Thc a cut is detected.

The idea is to find shifts with a high peak relative to the local background.

We had to find a good threshold for the observation-exclusion method. By again
using the F1-score we could determine the cut threshold to best at 30% of the
maximum peak for ”Zelotypia”.

90 Experiments & results

Figure 4.8: Difference between frames from the 1 minute video sequence in
”Zelotypia”, measured by the Euclidean distance (2-norm) of the
vectorized mini-frames.

Next we apply random projections. From theorem 2.6 (Johnson-Lindenstrauss
lemma) we have the following theoretical dimension bound for the ”Zelotypia”
video sequence with 416 frames and a ε = 0.5, which is the highest value for ε
according to the theorem. This results in a lower bound for the projection space
dimension of

dmin >
9 ln(416)

0.52 − 0.53
= 434, 2 (4.4)

where dmin is the dimension of the projection space. According to the Johnson-
Lindenstrauss lemma we hence have to project onto a space with at least 435
dimensions. This translates into a data reduction of 1200−435

1200 = 63, 75%. But as
we saw in chapter 2, when we discussed the bound of random projections, that
the bound stated by the lemma is very wide and we may reduce the projection
space dimension dRP even further and still obtain good results.

We found that a random projection dimension of

dRP = d9 ln(n)e (4.5)

was sufficient for our tasks, though we did not make a rigorous test of good
dimension settings, which we encourage to do before using this method. The
relationship between the original distance and the approximated distance is
shown in figure 4.9, where we see 10000 randomly sampled examples of frame
distances. We see a high correlation of 0,9887 for the original distance and the

4.1 Cut detection 91

Figure 4.9: Relationship between the original distance and the distance in the
random projection space with dimension dRP = d9 log(n)e.

approximation of it. The figure indicates that the distance distortion generally
is small.

Using the bound above we obtained a data reduction of 1200−72
1200 = 94% for

”Bang! You’re dead”, which has 2943 frames for the full video sequence, after
downsampling to a frame rate of 8.

We generate the random projection matrix by drawing dRP observations from a
centered dorig dimensional multivariate normal distribution with unit variance.
Denote the dRP×dorig dimensional projection matrix by R. We next project our
dataset of vectorized mini-frames onto the random projection space by finding

XRP = XR′ (4.6)

From this matrix we find the approximated distance matrix, which is shown
for ”Zelotypia” in figure 4.10. We note the high similarity to the full distance
matrix in figure 4.7 and we again see the clear separation where scene shift
appear as well as the blue squares, showing which frames belong to the same
scene. The values of the first bi-diagonal, i.e. the distance between adjacent
frames, is very similar to figure 4.8 and is hence not shown here. We again obtain
perfect recognition, without false positives nor negatives for the Zelotypia video
sequence.

92 Experiments & results

Figure 4.10: Approximated distance matrix of frames in the 1 minute video
sequence in ”Zelotypia”.

We again started by training the threshold with ”Zelotypia”, where we found
a good threshold for the observation-exclusion method to be between 20% and
40% and we picked 30%, which actually had an F1-score of 1 for both the full
distance and most of the time for the random projections distance.

Next we tested the performance of the observation-exclusion threshold on the
full frame distance for ”Bang! You’re dead” and found a precision of 85% and a
recall of 100%.

We then applied the random projection to our test data from ”Bang! You’re
dead”. Table 4.1 summarizes the cut detection result for a typical run of the
algorithm. Since random projection is random, the results differ between runs.
The shown results are for a random draw and are hence subject to variations,
though they showed to be relatively minor. The recall almost didn’t change,
but the precision changed up to 10%.

We note the perfect recall of 100% (51 of 51 cuts are detected) and the high
precision of 88% (51 of 58 detected cuts were correct). Like the other methods,
the random projection approach relies on a sudden change in frame difference,
and hence does not recognize the faded transition as a cut (which didn’t count
as cut in the above analysis). 3 of the false positives are from a scene where a
bright hand on a black background moves quickly from left to right and hence

4.1 Cut detection 93

Cut No cut
Cut detected 51 7

No cut detected 0 2885

Table 4.1: Cut detection results for ”Bang! You’re dead” for random projec-
tion.

causes a high frame difference. Using histogram-differences as a second filter
may solve this problem, but were not tested.

It is worth noting the computation time using random projections. Building
the mini-frame dataset for in-memory video data takes 6.9 seconds for 2934
frames. The cut detection with the full distance takes 0.026 seconds. Using
random projections takes a little longer, 0.051 seconds, because the projection
has to be performed first. Since we only calculate the first bi-diagonal of the
distance matrix, we not yet benefit from the dimension reduction. We will see a
much greater effect for the scene category detection in the next section, because
we will use all elements from the distance matrices. Nonetheless, detecting
cuts with a high precision and recall only using the frame distance is a great
improvement compared to the running times reported in [RRC+04], where their
best performing method would take approximately 13.4 seconds on the ”Bang!
You’re dead” video sequence.

94 Experiments & results

4.2 Scene category detection

Recall from section 3.1 that scene categories are specific camera settings in spe-
cific locations and can have several scenes associated. From the above experi-
ments with cut detection, we have now a reliable tool for extracting the scenes
from a movie. We now would like to collect these scenes into scene categories.

4.2.1 Prior art

To our knowledge this has not been done explicitly for video sequences before,
even if it appears to be a relative simple task and with relevant application in
video editing and can be used as an extra feature in video sequence analysis.
While movies are often told from different perspectives, by showing the scene
from different angles and with varying zooms, it is easier to analyze the actions
from one perspective alone.

What has been done by others, though, is the categorization of images into
a number of categories like forest, living room, supermarket, sky, ocean, etc.
This work has been done by the Computer Science and Artificial Intelligence
group of MIT. In a giant project by J. Xiao, J. Hays, K. Ehinger, A. Oliva, and
A. Torralba ([XHE+10]), in which several thousand images have been collected
into a large image database called the ”SUN database”. The team then built
a model for sorting the images into several hundred categories describing the
shown location.

Another related work by G. Friedland, O. Vinyals and T. Darrell ([FVD10])
is the combination of multimedia for detecting the geographical location of an
image. This task is very similar to what we are about to do and they use some
of the same tools. We only use the visual information for the categorization, i.e.
use SIFT-features for matching patches between scenes. Darrel et al. also use
SIFT-features on a regular grid for finding similar images from image databases,
but their main focus is on the audio-part of location estimation using ambulance
sounds. They note that our problem can be modeled as that of an image retrieval
from a database, where the video sequence is the database and good matches for
frames from a specific scenes are search in the database, ignoring frames from
the same scene.

The desired result in this section is a ns × ns matrix Ds, where ns is the
number of scenes and where Ds

i,j is the dissimilarity of scene i and j. We use
a dissimilarity matrix instead of a similarity matrix, since many of the tool
available for discriminating between scenes depend on measures which obtain

4.2 Scene category detection 95

high values if the scenes are different, e.g. the frame distance used in random
projections.

We start by informally describing the steps we are going through to determine
the scene dissimilarity for SIFT-feature matching and random projections, which
we introduced in the previous section.

4.2.2 Algorithm for scene category detection - SIFT-features

We will extract patches of a fixed size from random frames of scene i. We
then use SIFT-features to find matches in scene j. Scene j is represented by
a random selection of frames from scene j. When a good match for a patch
from scene i is found in a frame from scene j, the corresponding patch from
the frame is extracted. The two patches are then compared by finding the
absolute difference of the 10-bin pixel intensity histogram of each patch. Patches
which are similar will have a low absolute difference. We are comparing the
bins of histograms instead of the pixel difference because the histogram has the
advantage of being more translation invariant, i.e. that image noise and small
translations of patches and camera position have less influence.

Different approaches to a dissimilarity measure have been tested, including

• Minimum absolute difference of compared patches.

• Mean absolute difference of compared patches.

• Median absolute difference of compared patches.

The minimum absolute difference has the advantage of capturing near-perfect
matches between patches in scene i and j, while the mean and median of absolute
difference are expected to capture the average dissimilarity and might hence
normally better cope with variations between scenes. We only present the results
for the minimum and the mean absolute difference below. The results using the
median absolute difference were very similar to the mean-results.

Figure 4.11 illustrates the matching of patches and frames with examples from
”Bang! You’re dead”. To the left we see a patch from one scene and to the right
a frame from another frame, shot from the same perspective. SIFT-features
for both the patch and the frame are indicated in green and a blue rectangle
marks the recognized corresponding patch in the frame on the right. Figure 4.12
shows the histogram for the original patch and the recognized patch. We see a

96 Experiments & results

Figure 4.11: Matching a patch from scene i to a frame from scene j. The patch
is shown in the upper left corner, a scatterplot of the displacement
of the SIFT-features in the lower left corner and the frame to the
right. The detected corresponding patch in the frame to the right
is marked by the blue rectangle.

high similarity, as expected, since the patch and the frame are from the same
scene category. Why would we expect that similar patches are found between
scenes? While the main object in frames tends to change, since the characters
in the video interact with it, the background of the same scene stays the same
in many cases and this is captured by the matching of patches. For example the
pistol shown in figure 4.11 is grabbed by the boy and hence changes between
scenes, but the clothes on which the pistol lies do not change throughout cuts
and should hence be matched.

We will now formally define our dissimilarity measure.

Let Pi be a set of patches of size hF × wF from scene Si. The patches are
selected at random by first selecting a frame F ∈ Si and then extract a random
patch of the given size from F . The number of extracted patches is chosen
proportional to the scene length, i.e. |Pi| = CP |Si|. We used CP = 1 in our
experiments.

Now select k frames F j = {Fi}ki=1 from scene Sj . The number of frames is again
chosen to be proportional to the length of scene Sj , such that |F j | = CF |Sj |.
We used CF = 1 in our experiments.

Before iterating over all patches and frames, the SIFT-features for all patches
and frames are calculated to avoid unecessary calculations.

4.2 Scene category detection 97

Figure 4.12: Histograms of the intensities in the original (left) and the detected
patch (right) shown in figure 4.11. We note the high similarity.

We now iterate over F j . For each frame we iterate over the patches Pi. For
each patch we match the SIFT-features of patch Pim to frame F jn. If more
than ThM matches with similar displacement are found we say to have found
a match. We then use the median displacement of the matches to locate the
corresponding patch Pm in frame F jn. Our dissimilarity measure is then defined
by the absolute difference Dij

mn between the intensity histograms of Pim and
Pm. If scene Sj shows approximately the same scenery as Si, more patches
are matched and the absolute difference of matched patches is expected to be
lower than for scenes which are not related. If not enough matches are found a
common penalty of Dij

mn = 1
2hFwF is used, which is chosen to be high in order

to penalize scenes where the patch is not found.

The absolute difference of all pairs of patches and frames is finally summed to
a single dissimilarity measure Dij for scene Si and Sj

Dij =
∑
m,n

Dij
mn (4.7)

.

Results The distributions of dissimilarity scores for related and unrelated
scenes are shown in figure 4.13, where we show both the dissimilarity score
obtained from mean difference of matched patches and the dissimilarity from
the minimum difference. We see clearly that the minimum-dissimilarity score is
separating the related and unrelated scenes better, which shows that one single

98 Experiments & results

Related Not related
Relation detected 92 87

No relation detected 60 785

Table 4.2: Scene category detection results for the first 2 minutes of ”Bang!
You’re dead” for the dissimilarity measure based on SIFT-feature
matching.

good match of patches is a better indicator than dissimilarity based on the mean
difference.

In table 4.2 the scene categorization results are shown for the first 2 minutes of
”Bang! You’re dead”, using the minimum-dissimilarity and a threshold obtained
from fitting the dissimilarity-histogram by a Gaussian Mixture Model with 2
Gaussian distributions. The recall is 61% and the precision 51%, both not
excellent but let’s see if random projections works better.

(a) Average patch-frame di�erence (b) Minimum patch-frame di�erence

Figure 4.13: Histogram of the average and minimum SIFT scene dissimilarity
scores for scenes which are related (red) and unrelated scenes
(blue). See the text for an exact description.

4.2.3 Algorithm for scene category detection - Random

projections

We apply random projections in the same way as done for cut detection and
the same considerations hold. We have again resized the ”Bang! You’re dead”
video to a size of 30x40 pixels and treated each pixel as a dimension, such that
each frame is an observation in a 1200-dimensional space. The distance between

4.2 Scene category detection 99

frames can help us find similar scenes. Figure 4.7 visualizes the distance matrix
for the video sequence from ”Zelotypia” with element (i, j) being the distance
between frame i and j. Recall that blue indicates a low distance and hence
similar frames. We clearly see rectangular regions of frames which are similar.
Especially we see that the intra-scene distance is mostly low, indicated by the
blue square regions around the diagonal.

Similar to the result for SIFT-features, where the minimum difference of matched
patches is the best indicator for related scenes, we have found that using the
minimum distance between frames of different scenes is a good indicator for
scenes belonging to the same scene category. Similar to the histogram of the
SIFT-dissimilarity scores for related and unrelated scenes in figure 4.13, we show
in figure 4.14 the average and minimum distance between frames of scenes in
the same category and those which are not related.

Let’s make clear what we did:

• Find the Euclidean distance between all L frames in the video and store
them in a L × L matrix, such that element (i, j) is the distance of the
30x40 version of frame i and j. If X is the L× 1200 matrix containing all
L miniature versions of the frames, we hence find

√
XX′.

• Select the block of the matrix containing the distance informations for
frames in scene Si and Sj . The location is known from a cut detection
algorithm like the one we presented in the previous section.

• From the selected block, find the average or minimum distance and use it
as dissimilarity score.

We see again in figure 4.14 that the average and minimum distances for related
scenes are shifted towards 0, while scenes which are not in the same category
have a distribution with a significantly higher mean. We hence can detect
scenes which are related by fitting a Gaussian Mixture Model with 2 Gaussian
distributions to the histogram and use the fit for determining a threshold at
which scenes are detected as related. We found that the minimum distance
gave the best separation between scenes, as we also see from the histograms.
We expect this to be due to the fact, that it is enough to have one close match of
frames in two scenes to consider them as related. Especially in the case, where
an action starts in one scene, is interrupted by another scene, and is continued
from the same state. In that case the last frame of the first scene and the first
frame of the second scene may be close matches, while the rest of the frames
don’t need to be.

100 Experiments & results

Related Not related
Relation detected 94 64

No relation detected 58 808

Table 4.3: Scene category detection results for the first 2 minutes of ”Bang!
You’re dead” for the original (full) distance matrix.

Table 4.3 shows the number of scenes correctly detected as related (true posi-
tives), false positives, false negatives and scenes which are not related and are
also detected as non-related (true negatives). We see a good balance between
false positives and false negatives and hence have a similar recall and precision
of 62% and 59%, respectively. This is slightly better than using SIFT-feature
matching.

(a) Average frame distance (b) Minimum frame distance

Figure 4.14: Histogram of the average and minimum frame distance for scenes
which are related (red) and unrelated scenes (blue). The frame
distance is found for all pairs of frames and then a score for scene
dissimilarity is determined by taking the average or minimum
frame distance for frames.

We now again apply random projections.

Several dimensions for the random subspace were tested, with a result similar to
the full space for dRP ≥ 9 ln(n). Again these weren’t rigorous tests and should
be repeated. We have used dRP = 9 ln(n) for the following results. We show
in table 4.4 the {true,false} {positives,negatives} (short: confusion matrix) and
see a similar result to that shown in table 4.3 and 4.2. We hence see no large
difference in the performance of the SIFT-feature based dissimilarity score and
our method based on frame difference.

4.2 Scene category detection 101

Related Not related
Relation detected 91 79

No relation detected 61 793

Table 4.4: Scene category detection results for the first 2 minutes of ”Bang!
You’re dead” for random projections.

While the performance of SIFT patch-frame dissimilarity and random projec-
tions is comparable, random projections again shows it’s strength when com-
paring the computation time. Random projections is more than 20x faster,
spending 28 seconds on the 2943 frames and 32 scenes, while our method based
on SIFT-features takes about 21 minutes to finish. This time random projec-
tions also performs better than the full distance matrix, which takes 61 seconds
to finish.

Final note There are further improvements possible. What has not been used
in our methods is the fact that matching scene S1 to scene S4 and scene S4 being
matched to scene S7 implies that S1 is related to S7, since two scenes being in
the same scene categories is an equivalence relation, mathematical expressible
by S1 ∼ S4 ∼ S7.

102 Experiments & results

4.3 Camera motion detection

The next application we will discuss is another step in describing the scenes of
a video sequence. For once we will not discuss the application of randomized
data reduction methods but fully focus on the image analysis aspects.

While the scene categorization tells us, which scenes are related, we now would
like to describe the characteristics of the scenes, namely the way the scene has
been filmed. Did the camera operator use a tripod or was the camera hand-held?
Did he use zooms or pans? If the camera is hand-held how much does it shake?
If we can reliably detect the image motion, we can also use the information for
stabilizing the image.

Image stabilization is a research topic of its own right and we will not make
new contributions. The method we will present is a standard part of many
modern video stabilization techniques ([WCCF09],[YSCM06], [BGPS07]), using
the displacement information of matched SIFT-features.

When using SIFT-features for matching keypoints in images, it is important
that the sample image, showing the target object, and the test image, which
will be searched, show the object from approximately the same angle, such that
the key points look similar. The advantage of video is here, that objects are
usually changing slowly across frames and matching of SIFT-features works well
and with a relatively high precision of the feature positions. By matching SIFT-
features of two adjacent frames, we have information about the displacement
of points. In figure 4.3 we saw how SIFT-features are matched in adjacent
frames and used the number of matches for detecting cuts. We also saw in the
figure, that there are a few mismatches which would lead to a significant error
if we were estimating the mean displacement. Instead we will use the median
displacement for detecting the camera motion and stabilizing the image. Wang
et al. ([WCCF09]) and Yang et al. ([YSCM06]) point out, though, that simple
SIFT-matching has a high tendency of mismatching in specific situation, e.g.
blurred or extremely shaky videos. Yang et al. use a particle filter instead and
show that this method is more robust in the mentioned situations than SIFT-
feature matching as it is proposed by the original article by Lowe ([Low99]). The
approach used by Wang et al. is a graph matching algorithm, which uses the fact
that two adjacent video images tend to be similar and hence most SIFT-features
are found in both images and can hence be matched with a graph matching
technique called ”Reproducing Kernel Hilbert Space”. A third method is used by
Battiato et al. ([BGPS07]), based on a modified version of Linear Least Squares
fitting for finding the affine transformation, which stabilizes the image. They
start by discarding matched SIFT-features with properties unlikely to represent
a camera shake, for example SIFT-feature matches with large displacements.

4.3 Camera motion detection 103

They also use the information from previous frames, to give a higher weight to
SIFT-features present in several frames. Using only the SIFT-feature matches
with high quality Battiato et al. obtain a good estimation of the inter-frame
motion. Reproducing results can be tricky because, as Battiato et al. point
out, SIFT-features are not standardized and may differ slightly for different
implementations and under the variation of parameters, like thresholds, which
often aren’t reported.

Using the median should in most cases give us the same or better results than
fitting, which is an optimization over all observations and hence susceptible to
outliers.

In the figures 4.15, 4.16 and 4.17 we show sequences of frames and corresponding
plots showing the displacement between these frames. (0,0), marked by a red
star, indicates no median displacement. The effect of a static camera is shown
in figure 4.16, were we see that all frames have median-displacement close to
0. On the contrary the scene shown in figure 4.15 has both movement of the
object and the camera and hence shows high displacement in all directions, as
the camera tries to track the object (the woman). The scene shown in figure
4.17 shows a panning from top to bottom. In the corresponding displacement
plot we see that the median displacement is shifted significantly away from (0, 0)
in one direction. We can use this to detect panning.

104 Experiments & results

(a) Frames

(b) Displacement plot

Figure 4.15: Example of hand held camera motion in a series of frames. (b)
shows the median displacement in adjacent frames.

4.3 Camera motion detection 105

(a) Frames

(b) Displacement plot

Figure 4.16: Example of a steady camera in a series of frames. (b) shows the
median displacement in adjacent frames.

106 Experiments & results

(a) Frames

(b) Displacement plot

Figure 4.17: Example of a panning camera motion in a series of frames. (b)
shows the median displacement in adjacent frames.

4.4 Motion-based object extraction 107

4.4 Motion-based object extraction

From the considerations above, it is a small step to extend the displacement
information of the matched SIFT-features to detect moving objects. Since ob-
jects are moving relative to each other, their SIFT-features will be displaced
different amounts and we can then use clustering methods for separating the
objects. The main challenge we have to overcome is to detect the number of
objects which are moving. For simplicity, though, we will limit the analysis to
two classes. This is sufficient for our video sequences, where we mainly have a
target object and background.

In figure 4.18(a) we show two adjacent frames from the video sequence ”Bang!
You’re dead”, the matched SIFT-features and a scatterplot of the displacement
of the matched SIFT-features. The displacement scatterplot shows a clear sepa-
ration of two clusters. SIFT-features with a displacement greater than 10 pixels
in either directions were excluded to remove most of the mismatched SIFT-
features. The shown example is chosen carefully, since it rarely is the case, that
the clusters are so clearly separable.

We now have a set of options for performing clustering on the data. We have
considered

• K-means

• Gaussian Mixture Model

Figure 4.18 shows the clustering result with K-means. We obtain the desired
clustering and the effects are clearly visible in the SIFT-features colored accord-
ing to the clusters. A few mismatched SIFT-feature are visible, but most of the
SIFT-features mark the moving object.

In figure 4.19 we show the same result for clustering with a Gaussian Mixture
Model (GMM). The GMM had in our tests a tendency of fitting the data with
two normal distributions with the same mean and different variances. Since
moving objects by definition have a higher displacement on a static background,
they have a higher variance relative to the mean displacement and are hence
sorted into the cluster represented by the normal distribution with the higher
variance. Since mismatched SIFT-features also have a high variance they all
were added to the cluster of the moving object. We hence see a lot of random
(mismatched) SIFT-features being recognized as moving. A found that a mean
shift is often the better feature to look out for, when looking after moving
objects, which is exactly what K-means clustering does.

108 Experiments & results

(a) Matched SIFT-features

(b) Clustered displacement

Figure 4.18: Example 1: K-means clustering of SIFT-feature displacement

Figure A.1,A.2, A.3 and A.4 in appendix A.3 show 2 more examples with K-
means and Gaussian mixture model, respectively. K-means introduces signif-
icantly less noise to the classifications and performs better than the GMM,
though figure A.2 shows that even K-means fails in some cases. The reason
often is a lack of movement of the target object, noise and mismatched SIFT-
features. We will discuss methods for dealing with the missing motion further
below.

We will continue our analysis using K-means. Furthermore, if not stated other-
wise, the analysis is applied to the first (left) frame of the two frames shown.

To get rid of the noise which is present in the classification, we apply SVM
with radial basis functions to the classified SIFT-features. The matched SIFT-
features are the observations and the labels obtained from the clustering algo-
rithms are the response we use. The degree of smoothing is governed by the
variance (width) of the radial basis functions, which we selected to be Σrbf = 0.5.
This gave a result which removed the spatially isolated misclassification and pre-
served small regions with correctly identified movement. After training a SVM
model on the initial K-means classification, we apply the model to the same

4.4 Motion-based object extraction 109

(a) Matched SIFT-features

(b) Clustered displacement

Figure 4.19: Example 1: Gaussian Mixture Model (GMM) clustering of SIFT-
feature displacement

data and obtain the smoothed clusters. For the initial K-means classification
shown in figure 4.18 we show the result after applying SVM in figure 4.20. We
see that the misclassifications have been removed and the regions of movement
are clearly visible. By using the trained SVM model, we could create a segmen-
tation of the frame and extract the moving object. This will be useful in section
4.6 about video compression.

In appendix A.3 the SVM smoothed classification of the displacement for ex-
ample 2 and 3 are shown in figure A.5 and A.6, respectively. From the negative
example 3, we see that SVM cannot correct the false motion detection. As we
noted before, the false detection of motion is expected to be caused by a lack
of motion of the target object and hence no difference between the background
and the target. One possible approach, which will not be pursued here, could
be a threshold for the minimum distance of the two means found by K-means.
If the distance between the cluster means is below the threshold, no movement
will be detected and the previous object segmentation will be used.

The effects of using K-means clustering, GMM and SVM are summarized in

110 Experiments & results

figure 4.21, where we show the adjacent frames with the different clustering
results.

(a) Matched SIFT-features

(b) Clustered displacement

Figure 4.20: Example 1: SVM smoothed K-means clustering of SIFT-feature
displacement

4.4 Motion-based object extraction 111

(a) K-means clustering

(b) Gaussian Mixture Model clustering

(c) SVM smoothed K-means clustering

Figure 4.21: Example 2: Summary of the two clustering methods and the effect
of applying SVM smoothing with radial basis functions.

112 Experiments & results

4.5 Linearity measure

An early goal of this thesis had been to perform detection of man-made objects.
For this purpose we used the SUN2012-database, an image database build by
a group of researchers at MIT [XHE+10], for extracting annotated objects. By
using WordNet on the object names, stored in the annotation file which came
with the database, we determined objects which are man-made. See appendix
A.4 for details.

The goal was to extract features from the object images which could be used to
train models, which in turn would be able to tell if a given image shows a man-
made object. One feature we extracted was a linearity-measure. We assumed
man-made object to be more regular than natural objects. The hypothesis is
thus, that man-made object will have more regions with straight lines. Detecting
straight lines in a picture can be done in several ways. A common way is the
Hough transform, where samples of lines are used to detect line-like regions in
the target image or in an edge image. This method works quite well for detecting
lines, even under partial occlusion, as figure 4.22 shows. The disadvantage is
the need for a detection threshold or the specification of the desired number
of detected lines and specification of the desired minimum line length and the
maximum gap size for splitting lines. All these parameters are not known in
general and often have to be adjusted interactively for each image.

We have hence developed a new method for detecting regions with straight
lines. The method still needs a threshold for detecting these regions, but by
normalizing the analyzed regions, we can define a common threshold or use a
histogram for selecting a threshold adaptively. Our main focus in this section is
the effect of using leverage scores in the process. We are using linear regression
for detecting line-like regions and hence all tools discussed in the theory-chapter
will be at our hand.

We start by a description of the algorithm. We use the image shown in figure
4.23 as example.

Conversion to gray-scale First color images are converted to grayscale im-
ages (figure 4.24).

Resizing image The image is resized to a common width to detect lines at
the same scale. Since we are going to divide the image into windows and the
window size has to be equal for all images for comparability, the number of

4.5 Linearity measure 113

Figure 4.22: Lines detected by the a Hough transform implemented by MAT-
LABs houghlines function.

Figure 4.23: Sample image for demonstration of the linearity measure.

windows should be roughly equal, to detect the same level of details in the
objects. We used 600 pixels as a common width.

Contrast adjustment The intensity of the grayscale image is adjusted to the
range [0,255] (figure 4.25).

Calculating edge image We are only interested in the edges and hence use
the edge image for finding linearity in the image. Another advantage of an edge

114 Experiments & results

Figure 4.24: Gray scale of the sample image

Figure 4.25: Contrast adjusted gray scale of the sample image

image is the binary class data, i.e. a pixel belongs to an edge or not. The
advantage of this is to be able to select those points from the image which are
relevant for the detection of lines (figure 4.26).

Windowing The edge image is divided into rectangular regions, windows, of
a given size. Window sizes of 10x10, 15x15 and 20x20 were tested (figure 4.27).

Building the dataset For each window we build a dataset to which we apply
linear regression. The edge-pixels in the window, e.g. the pixels belonging to
an edge, are used as observations. The x-coordinates of the edge-pixels are used

4.5 Linearity measure 115

Figure 4.26: Edge image of the sample image using Canny edge detection.

Figure 4.27: 3 examples of windows which are selected from the image. The
windows in our applications are arranged in a regular grid while
the windows here are chosen in order to demonstrate different
characteristics of the data.

as feature, while the y-coordinates are used as response. For a window with n
edge-pixels we build a n × 2 matrix, X, with ones in the first column and the
x-coordinates of these pixels in the second. The response vector y contains the

116 Experiments & results

n y-coordinates of these pixels.

If there are less than 5 edge-pixels the linearity measure is undefined and the rest
of the algorithm is skipped for this window. Linear regression is still possible
for 5 observations, but windows with very few observations adds unnecessary
noise to our method.

Fitting a line We then perform linear regression on the data and obtain β0

and β1, describing a line of the form ŷ = β0 + xβ1. Since we are also interested
in vertical lines, which cannot be fitted by the form shown, we also fitted a line
with x and y reversed (figure 4.28).

(a) Window 1 (b) Window 2 (c) Window 3

Figure 4.28: Linear regression of edge pixels in the 3 windows extracted in
figure 4.27.

The mean of the residuals From the fitted lines we can calculate the resid-
uals of the data, by finding the absolute difference of the actual y-coordinate
and the predicted y-coordinate, ŷ. The same is done for the fit with x and y
reversed. The fit for which the residuals are minimal is selected for the rest of
the analysis. Using the mean of the absolute differences indicates how well the
edge pixels in the window resemble a straight line. The lower the mean, the
closer the edge is to a straight line.

A challenge showed to be double-edges, which might be perfectly straight, but
the fitted line is between these lines. A smaller window size helps, but also
reduces the amount of data in each window. So we had to make a trade-off.

Linearity image After calculating the linearity for each window, we can gen-
erate a linearity-image, which shows the linearity measure as intensity (figure
4.29).

4.5 Linearity measure 117

Figure 4.29: Linearity scores for the extracted windows. A darker value (lower
residual error) indicates a higher linearity score.

Histogram of linearity scores The final linearity measure, used as feature
in the determination of man-made objects, is found by generating a 10-bin
histogram of the linearity scores and normalizing the bins. As we describe in
section A.4.4 in the appendix, the first bin size is particularly useful for the
detection of man-made structures (figure 4.30).

Figure 4.30: Histogram of linearity scores shown in figure 4.29.

Thresholded linearity image From the linearity image we can generate an
image indicating regions of straight lines, by applying a threshold. The threshold
we chose in our experiments was 0.4 times the average linearity score. Windows
with a linearity score lower than that were detected as regions with high linearity
(figure 4.31).

118 Experiments & results

(a) Threshold image (b) Overlayed detected line

Figure 4.31: The final image with regions of high linearity. (a) shows the
regions with high linearity, found by applying a threshold to figure
4.29. In (b) the regions are overlayed the original image.

(end of algorithm)

Applying leverage scores Our goal is now to study the effect of using lever-
age scores for finding regions of high linearity. In the step ”Fitting a line” we
performed linear regression and we can hence use the theory developed previous
for subsampling the data. We are especially interested in how uniform sampling
performs in comparison with leverage sampling.

For each window we subsample the data if there are more than 5 observations
present and we set a minimum sample size of 5. The sampling rate hence only
applies fully to windows with a high number of observations (edge points). We
will study the effects of subsampling with respect to leverage scores by testing
several sampling rates and compare the result to the thresholded linearity image
shown in figure 4.31, where we were using the full datasets. Our quantitative
comparison will be based on the recall and precision for each sampling rate, i.e.
we find the recall and precision of the thresholded linearity image. As ground
truth we use the thresholded linearity image where the full data is used. We
then combine the recall and precision to a single score, the F1 score, which we
already used earlier and is defined by equation (4.1).

In figure 4.32(b) we show the F1 scores for sampling rates from 2% to 100%,
where we draw the samples with respect to the leverage scores. We see a good

4.5 Linearity measure 119

result for sampling rates as low as 20% of the full data.

(a) Uniform sampling (b) Leverage sampling

Figure 4.32: F1 score for the linearity detection using subsampled linear re-
gression. The thresholded linearity image shown in figure 4.31 is
used as ground truth.

We repeat the experiments with uniform leverage scores. The resulting F1 scores
for different sample sizes are shown in figure 4.32(a) and are seen to be very
similar of the leverage-based sampling. This is a first indication of the leverage
scores being relatively uniform. Figure 4.33 shows the average leverage score
histogram for all windows. We see that the distribution of leverage scores is
relatively uniform, comparable to the distribution of leverage scores for the T3
dataset used in our theoretical discussions. This relatively uniform distribution
of leverage scores together with the similar F1-scores is a demonstration of
the low effect leverage sampling has when the leverage scores follow at most a
moderately steep power-law distribution or an even more uniform distribution.

The datasets we are dealing with here are very small and in fact a lot of win-
dows contain barely enough data to perform linear regression (we discard win-
dows with less than 5 observations). We show in figure 4.34 the computational
speedup for subsampling with respect to the leverage scores at different sam-
pling rates. The speedup is relative to the computation time when using the
full datasets. We see speedups of less than 1, which is to be expected, since the
calculation of leverage scores corresponds to solving the full linear regression
problem. Doing nonuniform sampling adds additional overhead. The drop in
speedup for low sample sizes is do to MATLABs error-handling when the matri-
ces are close to singular, which they were for low sample rates, which generates
output in the console for each window.

120 Experiments & results

Figure 4.33: Average leverage scores for window data, as described in the step
”Windowing”.

Figure 4.34: Computational speedup for leverage sampling at different sam-
pling rates. The speedup is relative to method using the full
datasets.

4.6 Video compression 121

4.6 Video compression

Random sampling of data with respect to an importance measure, like leverage
scores, isn’t only useful for analyzing video, but is more generally useful in
applications which benefit from knowledge about the data. Weighted sampling
is a good way of adding this extra information to the model, which we will
demonstrate here by applying weighted sampling to image reconstruction.

Maybe the most important and common problem when dealing with video is
the compression of the raw video data, which otherwise would be too big to be
stored. Some of the traditional parameters we can adjust in order to compress
the size of video is:

• Frame rate

• Resolution

• Using I- and B-frames, storing the whole or a differential image, respec-
tively.

In the following we will work with the adjustment of image resolution, though the
term will no longer be appropriate. We will propose compression by subsampling
the video image and hence reduce the number of pixels stored. Since the pixels
are not distributed evenly the term resolution will no longer be a trivial measure,
expressing the density of information on a given domain.

Actually a version of the uncertainty principle applies here: We cannot express
the resolution locally to an arbitrary precision. The more specific we are about
the region where we would like to know the resolution, the less accurate it
is specified. On the contrary, the more accurate we would like to know the
resolution, the less specific the region is for which this resolution applies.

Traditionally rescaling of images is done by using a regular grid over the image
and using the average of pixels at each grid point for generating a lower reso-
lution image. Later, when the original image is needed, the image is scaled up,
but details are lost, because downscaling is an averaging process.

We would like to subsample the image by randomly sample pixels from it. After-
wards we want to reconstruct the image from these samples. The first challenge
is to reconstruct the image from the randomly sampled data, which will be irreg-
ularly distributed across the image area. Figure 4.35(a)-(b) illustrate the sample
points for regular and random sampling. One way of reconstructing the image

122 Experiments & results

from randomly sampled pixels is to generate a surface from the sampled data
and linearly interpolate the rest of the pixels from this surface. The surface is
found from an interpolation using the 3 nearest samples, i.e. the samples which
make up the corners of the triangle of the Delaunay-triangulation.

One example, with a sample rate of 2% of the original number of pixels, is
illustrated in figure 4.37 together with an image with traditional subsampling
and the original image. The figure illustrates the performance of the two sub-
sampling methods at a very low sampling percentage. It is clearly visible that
the randomly sampled image is very distorted. The sampling has been done
uniformly over the whole image area, as shown in figure 4.35(b).

4.6.1 Weighted sampling

We will now look further into the performance of random subsampling, when
weighting the pixels. We feed the random sampling process with information
about regions which are of special interest and hence may need more samples and
on the contrary regions which are fine with fewer samples. Regions with high
contrasts, for example, need more samples to be well represented, while regions
with similar intensity may need as low as one single sample to be represented
sufficiently.

Using the gradient Our first weighting uses the gradient magnitude image
and puts a high weight on all pixels around regions with high gradients, shown
in figure 4.38. We can improve the image even at low sample rates, as it is
clearly visible in figure 4.39. The figure compares the traditional down-scaled
image (top) and the randomly sampled image with gradient weighting (bottom)
to the original image (middle). In the case of the image shown in the figure,
the image has a background with high gradients and hence many samples are
used for the background. The method works visually better than uniform sam-
pling. For parts of the image, like the nose tip, the reconstruction using the
gradient weighting already contains details which are not present in the regular
downsampled image.

The sample weights are found by computing the gradient magnitude for each
pixel. This gradient image is then blurred by using a uniform average filter with
a window size of 10x10. The blurred image is multiplied by 200 and added to
a uniform image with intensity 1 in all pixels. We do this to give a non-zero
weight to pixels in regions of uniform intensity in the original image. As Ma
et al. found in [MMY13] for their SLEV sampling method, the best sampling

4.6 Video compression 123

is obtained by combining leverage scores with uniform weights in a mixture of
90% to 10%. The resulting weight-image is that shown in figure 4.38.

Adding regions of interest We further want to test the effect of selecting a
region of interest (ROI) where the weights of the gradient weighting are amplified
in order to oversample that region (or equivalent, decreased the weights outside
the region). For the purpose of testing, we manually select a ROI, performed
weighting of pixels based on the magnitude of the gradients and finally reduced
the weights of pixels outside the region of interest by 90%. The result of the
random sampling as well as the indication of the ROI is shown in figure 4.40.
While the background is very blurry, the ROI has much more details, in parts
resembling the original image quite closely, even at the low sampling percentage
of 2%.

Selecting the ROI is hence an important step to represent the important parts of
the image at a very low sampling rate. There are several options for selecting the
ROI and they perform very differently in different situations. In our test scene,
the woman walks down a street and hence the background changes quickly,
while the head of the woman moves around, but is mostly visible throughout
the whole scene. As we saw in section 4.4, where we extracted objects using
the displacement of SIFT-features, we saw that we could track objects and
distinct it from the background. We could use this information to automatically
select the ROI in scenes where the camera tracks the ROI in front of a moving
background. Due to lack of time we cannot present the results here, but will
give a demonstration at the defense of this thesis.

Probably the most challenging situation for automatic ROI-selection are scenes
without camera nor ROI movement. We then have to fall back on techniques
suitable for selecting interesting parts of the image, like it is done in [PCI+07],
if the object of interest is known and training examples exist (for example from
previous scenes). We refer to [LYS+11] for the detection of unknown, salient
objects.

4.6.2 Evaluating the random sample reconstruction

Perceptual quality of reconstructions In figures 4.37-4.43 we compare the
traditional regular downsampling (top) to the original image (middle) and our
random sampling reconstruction (bottom). The first 3 figures show the results
for a sampling rate of 2%, while the last 3 figures show results for a sampling rate
of 20%. Perceptually the results at 20% are all good and only minor artifacts are
visible. Especially when using a region of interest, the result in the ROI becomes

124 Experiments & results

hardly distinguishable from the original image. The result for sampling based
on the gradient magnitude at 20% in figure 4.42 has minor artifacts in the
background and the hair, i.e. where fine details are shown. The performance
of the random sampling in regions of many details is generally below that of
regular downsampling, while the performance is good on bigger surfaces, where
we benefit from the linear approximation. For uniform sampling at 20% we start
to see more perceivable artifacts. Especially at edges with high contrasts the
interpolation results in fuzzy edges, since the sample points are not fully aligned
with the edges and hence the adjacent colors leak into the neighboring areas.
This is clearly visible at the edges of the sunglasses where the bright skin and the
dark surface of the sunglasses meet. These fuzzy edges are strongly decreasing
the perceptual qualities of the reconstructed image, since the human vision is
accustomed to focus on clear edges and regions of high contrast. In the theory
of textons, which are detected pre-attentive in the human visual perception, it
is shown that some basic object features, including lines, are detected early in
the visual perception cascade ([Jul81], [ZGWX05]).

We note that the artifacts are mainly an irritation inside the region of interest.
For the background it is barely a problem. For the 20% sampling rate using a
ROI the quality of the background is in fact below that of regular downsampling,
but only stands out when focusing on the background. Since the background
contains little information, the decreased quality is perceptually more compa-
rable to an intentionally blurred background.

When comparing the results for a 2% sampling rate we notice the low quality
of the uniform sampling. The perceptual quality is far below that of the regular
downsampling, for the same reasons discussed above. The leakage of colors from
adjacent regions into another region makes it difficult to even recognize large
structures, like the head or sunglasses. Especially critical is the distortion of
the shape of objects, which makes it hard to recognize them, while the regular
downsampling is a simple averaging which preserves the shape of objects, which
the brain can easily reconstruct by using experience.

When using the gradient weighting, we get a perceptually much better result,
since the leakage of colors is largely reduced. Adding a ROI further improves
the quality in the ROI, but in turn the background becomes clearly distorted
and unrecognizable.

Quantifying the quality of random sample reconstruction For the ex-
periments presented in figure 4.37-4.43, we have commented on the subjective
appearances of the reconstructed images to give an indication of the perceptual
quality of the reconstruction with random samples. But we also want to make

4.6 Video compression 125

our analysis more quantitative and measurable. We will hence define a signal-to-
noise-ratio. It uses the mean intensity of the reconstructed image (µreconst) and
the variance (σ2

reconst) of the difference image. The difference image is found by
subtracting the reconstructed image from the original.

SNR =
µreconst
σ2
reconst

(4.8)

We will compare the SNR for regular downsampling, PCA, uniform sampling,
sampling with respect to the gradient magnitude (as described above), and sam-
pling using gradients and a manually defined ROI. PCA will be the one to look
out for, as it is a common technique for data reduction in image compression.
For PCA we select respectively 2% and 20% of the components, correspond-
ing to storing approximately 2% and 20% of the data. We used a block size of
10×10, which we found to be the best block size by testing the SNR for different
block sizes. A thorough discussion of selecting good block sizes is discussed in
[NNJ05].

We found the following SNR (average ± standard deviation) for our example
with 15 frames and a sample size of 2%:

SNRREG = 0.1552± 0.0247

SNRPCA = 0.4848± 0.1087

SNRUNIF = 0.1618± 0.0351

SNRGRAD = 0.3024± 0.0447

SNRGRAD+ROI = 0.1950± 0.0406

For 20% sample size:

SNRREG = 0.6353± 0.1289

SNRPCA = 3.8345± 1.9568

SNRUNIF = 0.7308± 0.1379

SNRGRAD = 2.0755± 0.3857

SNRGRAD+ROI = 0.6904± 0.1282

For 50% sample size:

SNRREG = 0.8008± 0.2050

SNRPCA = 19.3990± 5.5409

SNRUNIF = 1.7540± 0.3758

SNRGRAD = 6.1204± 1.3084

SNRGRAD+ROI = 1.4444± 0.2867

126 Experiments & results

For 100% sample size:

SNRREG =∞
SNRPCA = 96.8467± 29.7512

SNRUNIF = 4.1197± 0.9109

SNRGRAD = 16.5466± 3.8530

SNRGRAD+ROI = 2.8317± 0.6059

What we observe from the signal to noise ratio is, that statistically the gradient
weighting is by far a better approximation of the frames, since the background
in our scene is a big part of the frames. The background is heavily undersampled
for the ROI method in favor of the ROI. The variance of the difference image is
hence high and the signal-to-noise-ratio lower, comparable to uniform sampling.
If we only consider the ROI when calculating the SNR, we obtain, of course,
much better ratios.

SNR2%
ROI = 1.0285± 0.3039

SNR20%
ROI = 8.9466± 2.6190

SNR50%
ROI = 32.9184± 7.3748

SNR100%
ROI = 90.2542± 17.9242

which is also reflected in the subjective appearance of the frames.

Surprising may at first be the slightly better performance of uniform sampling
compared to the traditional regular downsampling for low sample rates (2% and
20%), though it is not much and a hypothesis test cannot reject that the SNR
is the same for both methods for a 95% confidence interval and assuming an
underlying normal distribution. We found the difference of the SNR for the
regular downsampling and uniform sampling for each frame and found their dif-
ference. The difference (not absolute, positive values indicating a better uniform
sampling performance) was very close to zero with an average over 15 frames of
0.0067 for a 2% sample size. This is an insignificant difference in comparison to
the mean SNR for both methods. Only for higher sample rates, the regular sam-
pling eventually outperforms uniform sampling, since we perform sampling with
replacement. For all our random sampling methods it is wise to use sampling
without replacement for higher sample rates, since multiple sampling lowers the
performance.

We note the good performance of PCA which is significantly better than for
the other methods. But we also note when only taking into account the region
of interest, we get significantly better results for the random, gradient- and
ROI-weighted sampling.

4.6 Video compression 127

(a) Regular grid

(b) Uniform sampling

(c) Gradient weighted sampling

(d) Gradient and ROI weighted sampling

Figure 4.35: Sampled points for different weightings at a sampling rate of 2%.

128 Experiments & results

(a) Uniform sampling

(b) Gradient weighted sampling

(c) Gradient and ROI weighted sampling

Figure 4.36: Sampled points for different weightings at a sampling rate of 20%.

4.6 Video compression 129

Figure 4.37: Uniform sampling, 2% sample percentage. Top: Traditional
down-sampling, middle: Original image, bottom: Image from
uniform weighted random samples, 2% sample percentage

Figure 4.38: Weighting image using gradients. Light regions indicate regions
of interest which we would like to oversample.

130 Experiments & results

Figure 4.39: Gradient-weighting, 2% sample percentage. Top: Traditional
down-sampling, middle: Original image, bottom: Image from
gradient weighted random samples, 2% sample percentage

4.6 Video compression 131

Figure 4.40: Gradient-weighting and Region of Interest (ROI), 2% sample
percentage. Top: Traditional down-sampling, middle: Original
image, bottom: Image from gradient and ROI weighted random
samples, 2% sample percentage

132 Experiments & results

Figure 4.41: Uniform sampling, 20% sample percentage.. Top: Traditional
down-sampling, middle: Original image, bottom: Image from
uniform weighted random samples, 20% sample percentage

4.6 Video compression 133

Figure 4.42: Gradient-weighting, 20% sample percentage. Top: Traditional
down-sampling, middle: Original image, bottom: Image from
gradient weighted random samples, 20% sample percentage

134 Experiments & results

Figure 4.43: Gradient-weighting and Region of Interest (ROI), 20% sample
percentage. Top: Traditional down-sampling, middle: Original
image, bottom: Image from gradient and ROI weighted random
samples, 20% sample percentage

Chapter 5

Discussion

We set out to study the behavior of data reduction techniques in theory and in
application to video data. Let’s collect the parts and assemble them to the big
picture.

First of all we have been able to show the proofs of the analytical results for the
unweighted subsampled linear regression in the article [MMY13] by Ma et al.
to be correct. We made clear why they choose to use reweighting when subsam-
pling, which is due to a bias in the matrix products, when the reweighting is not
done. Nonetheless we saw that unweighted methods on average can converge to
the same solution as the weighted methods. This is a surprising fact because
the method we discussed was unweighted and should hence be expected to have
a bias. When discussing our alternative KNN-importance measure we had to
reweight the samples in order to obtain convergence to β0. This wasn’t true
without reweighting.

We furthermore were able to reproduce the empirical results for the UNIF, LEV
and LEVUNW method presented by Ma et al. We could hence confirm the
conclusion that leverage sampling generally performs at least as good as uniform
sampling and had superior results for datasets where the leverage scores follow a
very steep power law distribution. Remarkably the method without reweighting
had a better variance and slightly better bias than the reweighted sampling
methods. At least this is true when averaging over several response vectors,

136 Discussion

since we showed that the unweighted leverage sampling, LEVUNW, has a bias
and variance different from that of the two other methods for a fixed response
vector, though this wasn’t prominently visible in our results.

Despite the fact that we were able to show the results on artificial data, we
found in the linearity-measure experiments in section 4.5 and some experiments
not included in this thesis, that the hat matrix leverage scores for natural data
sets often are too uniform to perform better than uniform sampling and hence
justify the calculation of leverage scores and using them for sampling. As we
saw with the artificial data, uniform sampling gives the similar results in that
case.

The extension of the discussion to logistic regression showed that sampling with
respect to leverage scores does not work better than uniform sampling. In fact
we observed in figure 2.7 that the variance is higher for leverage sampling and
that β̂ converges to different values for uniform and leverage sampling. We did
discuss reasons, why we should not expect to observe the same β for experi-
ments with logistic regression, which can be largely influenced by subsampling
and separability of the data. Experiments with an alternative weighting, us-
ing the class probabilities found from the full solution, showed a similar result,
where leverage sampling did perform worse than uniform sampling, though both
methods failed to converge to β0. We hence conclude that hat matrix leverage
sampling does not work for logistic regression. We have to wonder, if subsam-
pling of logistic regression is possible at all. We encourage to do a rigorous study
of the subsampling effects on logistic regression.

On top of that, we needed the full logistic regression solution to be able to
extract leverage scores. That defeats the purpose of leverage scores as a method
for reducing the dataset.

This was a problem which showed to hold true for almost all approaches tried,
though for linear regression more efficient calculations for the leverage scores
exist, both exact and approximated. Also when generalizing leverage scores
using stochastic simulation, we couldn’t avoid to solve the original problem
in one way or another. The stochastic simulation approach wasn’t meant as
an efficient way of calculating leverage scores, though. Instead our goal had
been to find a practical method to calculate leverage scores for a wide range of
models. This was successfully done and the results both were in agreement with
the leverage scores for linear regression and the result we found for SVM looked
”right”, putting high leverage scores on observations close the optimal separating
line in our experiments. We saw that the observations at the optimal separating
line for the full problem had a non-zero leverage score and the scores were higher
for points in the outer region of the data set. For logistic regression we observed
that the analytical generalized leverage, using the objective function for logistic

137

regression, was found to be the hat matrix corresponding to logistic regression,
but in the stochastic simulations the leverage scores were found to be similar
to those of linear regression. Recalling that the subsampling with respect to
leverage scores didn’t work for logistic regression, the subsampling done in our
stochastic simulation seems to be bound to be a bad way of calculating the
derivative. As a consequence of the challenges for logistic regression, it would
be interesting to test other models and do further research in order to determine
if there are other models which, similar to linear regression, can have subsampled
problems which have solutions which are approximations to the solution of the
original problem. As we demonstrated, SVM cannot be subsampled without
altering the problem and the subsampled data had a separation line which was
different from that of the full problem. For logistic regression this showed to be
true as well, though there might be a reweighting of the data, similar to that
of linear regression, which can make the subsampled problem an approximation
to the full problem. A thorough analysis of what characteristics make a model
suitable for subsampled approximations (with or without reweighting) would
hence be helpful.

Much more promising for data reduction is the use of random projections, which
achieves what we hoped to be able to do with leverage scores: Efficient (fast)
reduction of the dimension of data without losing too much information and
be able to tell how precise the estimate is. In our experiments we were able
to show not only that the Johnson-Lindenstrauss lemma holds true experimen-
tally, but also that the lower bound for the dimension of the projection space is
too pessimistic in most cases. This way we were able to drastically reduce the
dimension of the representation of frames in video and use this information for
detecting cuts and grouping together related scenes. The random projections
dimension used was far below that of the theoretical bound. In fact the the-
oretical bound indicated that random projections wouldn’t be a good tool for
reducing the dimension of our dataset. While the theoretical result still is true,
it showed to be a good idea to ignore it. In our scene categorization experi-
ments we saw that since the frame distance of different scenes is usually high,
the distortion of the distance caused by the projection is acceptable in our case,
even if we don’t have a theoretical result anymore to back us up.

In our experiments we were able to show both the effects of random projec-
tions, which worked very well, and the effects of using patches in combination
with SIFT-features for increasing the performance of our algorithms. For the
approach using patches we found that the random sampling of patches often per-
forms worse than the analysis on the full frames, as we saw for our SIFT-feature
count method for cut detection.

In the video compression experiments, we demonstrated the effects of using im-
portance measures in sampling. We were able to obtain results similar to that

138 Discussion

of simple PCA under certain circumstances, though generally we had a slightly
worse signal-to-noise-ratio for our methods applied to the full frame than PCA.
Compared to regular downsampling of the image, we did get slightly better re-
sults. Despite some good results for our random sampling methods, the methods
we have discussed have several drawbacks, which make them uninteresting for
video compression. First of all, since we do not sample on a regular grid, but
randomly, we have to store each measurement together with its position in the
image, which usually at least triples the data generated. Also our method is
computationally more complex than other compression methods. Here the reg-
ular downsampling has the advantage of the sample positions being determined
by a deterministic rule.

We have learned the following about randomness in algorithms from the theory
and applications in this thesis:

Analytical results and bounds Using randomness makes it easier to show
certain properties of algorithms and approximations than deterministic rules.
Especially useful are analytical results on bounds for parameters, which help
to guide the choice of parameter values in practical applications, though we
were able to obtain results with random projections dimensions far below the
theoretical bounds. Also we can’t get around the fact that similar analytical
results can be obtained like those in [PKB14].

Low sample rates We observed that the difference between deterministic
regular sampling, uniform sampling and sampling with respect to an importance
measure decreases for sample sizes relatively close to the size of the full dataset.
Weighted sampling outperforms the other two methods mainly for low sample
sizes, since weighted sampling incorporates extra knowledge about the data.

High sample rates Contrary to the result for low sample sizes, random meth-
ods do not converge to the full data results of a model when using sample sizes
close to or equal to the size of the full dataset, at least if sampling with replace-
ment is used. The use of replacement or not, when sampling observations from
a dataset, is hence something to be considered when using randomness.

Uniform versus weighted sampling Our main concern has been the per-
formance of weighted sampling compared to uniform sampling, which has been
our benchmark. We found that in many cases it isn’t worth the trouble to cal-
culate any importance measure, since the computation time of the full models,

139

using the full dataset, is often better. At the same time uniform sampling has
in many cases been argued to have a better worst case performance than deter-
ministic methods (see section 2.1.1). Uniform sampling hence often is a good
way of reducing the problem size, when no further knowledge (like the leverage
scores) is available and deterministic data reduction methods are expected to
encounter pathological data.

140 Discussion

Chapter 6

Conclusion

As pointed out in the discussion a crucial result is the confirmation of the results
by Ma et al., emphasizing random sampling as a valid approximation to linear
regression in general and sampling with respect to leverage scores in particular.
The analytical results which we were able to show both are useful because they
show that the subsampled problem does indeed converge to the same solution
as the full problem and at the same time the variance decreases for increasing
sample sizes. Also random sampling has a better variance for leverage score
sampling compared to uniform random sampling at low sample sizes.

For the generalization of leverage scores to other models we have used the pro-
posal by Wei et al., where the derivative of the predicted response with respect
to the input response is defined as leverage score. We were able to show that
this definition is in agreement with the definition of leverage scores for linear
regression by using the hat matrix.

The proposed estimation of the response-derivative for arbitrary models using
stochastic simulation showed agreement with the hat matrix leverage scores for
linear regression and gave a reasonable result for SVM. An advantage of our
method for calculating leverage scores is its ability to find leverage scores for
a large range of models. A drawback is the high computational complexity,
making it expensive to use on large datasets.

142 Conclusion

The computational complexity of finding leverage scores is a problem which at
this point is a problem for leverage sampling as a data reduction method. We
saw that we can use random sampling as a means of training linear regression
on a significantly smaller dataset while still obtaining a solution, β̂, which is a
good approximation to the full solution, but the total computation time could
not be reduced due to the need for finding the leverage scores first. Using a naive
calculation of the hat matrix, this holds true for all dataset sizes. We also found
that natural data often has leverage scores which are too uniformly distributed
to benefit from the results shown for sampling with respect to leverage scores.
This implies that leverage scores are only useful in special situations, while at
the same time uniform random sampling may both be a good approximation
and also be much faster than training on the full dataset.

The alternative to random sampling of observations was random projections,
which ”samples” features. This method showed to perform well in our experi-
ments, especially when applied to the detection of cuts we could obtain results
better than those presented by a relatively recent paper by Robles et al., out-
performing their methods both in terms of precision, recall and computation
time.

Furthermore random projections worked well for scene category detection, at
least similar to the usage of SIFT-features, which is a direct and content-based
approach to video analysis, while we simply used the distance between mini-
frames for random projections.

We can conclude that uniform random sampling and sampling with respect to
leverage scores works well as an approximation to the linear regression solution
β̂ and hence the prediction of the response, while random projections works well
as a method for finding an approximation to the dataset.

We have discussed methods using SIFT-features for detecting and describing
camera motion and extracting moving objects from a background, as well as a
linearity measure used for detecting man-made objects.

Finally video reconstruction from random samples were demonstrated, showing
how random sampling can be used to extract informations using a set of weight-
ing methods, hence demonstrating how easy it is to incorporate knowledge about
a system by using sampling weights.

6.1 Further research 143

6.1 Further research

We have covered many aspects of the theory and experiments in this thesis, but
much more aspects have not been covered due to lack of time. The following
topics could be further researched to get a better insight in the performance of
randomized methods.

6.1.1 Theoretical topics

• Studying requirements for models to be approximated by subsampled
datasets, i.e. models for which the subsampled problem is converging
to the solution of the full problem.

• Literature review for tighter dimension bounds for random projections.
We used the first theoretical result for random projections available and we
have shown that the bounds we were presented with were not exactly tight.
The probability with which the distortion bound holds in the presented
version of the Johnson-Lindenstrauss lemma is fixed. A result where the
probability of the distortion bound is one of the parameters should be easy
to derive from the proof of the lemma.

6.1.2 Experimental topics

• Determine good settings for the mini-frames used in cut detection, which
we chose to have a size of 30× 40.

• Test the cut detection with random projections on a bigger test set of
video sequences (and train the thresholds on a training set distinct from
the test set).

• Further research on man-made object detection from image features (our
work is presented in appendix A.4).

• Determine a good penalty in SIFT-feature based scene categorizations,
when no match is found for patches from scene Si in the frames of scene
Sj . Currently we use 1

2hFwF , i.e. half the number of pixels in a patch, as
penalty. We suspect this number to be too high compared to the average
difference between a frame and a match.

144 Conclusion

Appendix A

Appendix

A.1 Detailed proof of theorem 2.2

Note 1: We will show equation 2.30, which we repeat here for convenience:

V ar[wij] = E[(wi − rπi)(wj − rπj)] =

{
rπi − rπ2

i i = j
−rπiπj i 6= j

(A.1)

. Recall that wi is the ith diagonal of the matrix W = S′XSX . wi is a realization
of a draw from the binomial distribution with r draws and success-probability
πi. We know for the binomial distribution that the expectation is rπi and hence

E[wi] = rπi (A.2)

Expanding the parentheses in the equation (A.1) we obtain

E[(wi − rπi)(wj − rπj)] = E[wiwj − rπiwj − rπjwi + r2πiπj]

= E[wiwj]− rπiE[wj]− rπjE[wi] + r2πiπj

= E[wiwj]− r2πiπj − r2πjπi + r2πiπj

= E[wiwj]− r2πiπj

For reference:

E[(wi − rπi)(wj − rπj)] = E[wiwj]− r2πiπj (A.3)

146 Appendix

We have to find E[wiwj]. We need several results about the binomial distribu-
tion and binomial coefficients:

k

(
r

k

)
= r

(
r − 1

k − 1

)
(A.4)

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k (A.5)

E[wiwj] =

r∑
k=0

r−k∑
l=0

klP (wi = k,wj = l) (A.6)

We will deal with the case i = j and i 6= j in equation (A.1) separately.

Case i = j: We calculate

E[w2
i] =

r∑
k=0

w2
iP (wi = k) =

r∑
k=0

k2

(
r

k

)
πki π

r−k
i

We apply equation (A.4) twice

E[w2
i] =

r∑
k=1

kr

(
r − 1

k − 1

)
πki π

r−k
i

=

r∑
k=2

(k − 1)r

(
r − 1

k − 1

)
πki π

r−k
i +

r∑
k=1

r

(
r − 1

k − 1

)
πki π

r−k
i

=

r∑
k=2

(r − 1)r

(
r − 2

k − 2

)
πki π

r−k
i +

r∑
k=1

r

(
r − 1

k − 1

)
πki π

r−k
i

Note that we have changed the indices along the way in the sums where we
multiply by k and k − 1 respectively, since the sum is 0 for k = 0 and k = 1,
respectively. Next we apply equation (A.5) after index shifts in both sums with
j = k − 2 and l = k − 1

E[w2
i] =

r−2∑
j=0

(r − 1)rπ2
i

(
r − 2

j

)
πji π

r−2−j
i +

r−1∑
l=0

rπi

(
r − 1

l

)
πliπ

r−1−l
i

= (r − 1)rπ2
i

r−2∑
j=0

(
r − 2

j

)
πji π

r−2−j
i︸ ︷︷ ︸

=1

+rπi

r−1∑
l=0

(
r − 1

l

)
πliπ

r−1−l
i︸ ︷︷ ︸

=1

= (r − 1)rπ2
i + rπi

A.1 Detailed proof of theorem 2.2 147

Putting this into (A.3) we obtain

E[(wi − rπi)2] = r2π2
i − rπ2

i + rπi − r2π2
i = rπi − rπ2

i (A.7)

Case i 6= j: We will use equation (A.6) and note that

P (wi = k,wj = l) =

(
r

k, l, r − k − l

)
πki π

l
j(1− πi − πj)r−k−l

=
r!

k!l!(r − k − l)!
πki π

l
j(1− πi − πj)r−k−l

where
(

r
k,l,r−k−l

)
is the multinomial coefficient.

We hence become

E[wiwj] =

r∑
k=1

r−k∑
l=1

kl
r!

k!l!(r − k − l)!
πki π

l
j(1− πi − πj)r−k−l

=

r∑
k=1

r−k∑
l=1

r!

(k − 1)!(l − 1)!(r − k − l)!
πki π

l
j(1− πi − πj)r−k−l

= πiπjr(r − 1)

×
r∑

k=1

r−k∑
l=1

(r − 2)!

(k − 1)!(l − 1)!(r − 2− k − l)!
πk−1
i πl−1

j (1− πi − πj)r−2−k−l

We substitute p = k − 1, q = l − 1 and adjust the sum bounds accordingly

E[wiwj] = πiπjr(r − 1)

r−1∑
p=0

r−p−1∑
q=0

(r − 2)!

p!q!(r − p− q)!
πpi π

q
j (1− πi − πj)

r−p−q

= πiπjr(r − 1)

r−1∑
p=0

r−p−1∑
q=0

(r − 2)!

p!q!(r − p− q)!
πpi π

q
j (1− πi − πj)

r−p−q

= πiπjr(r − 1) (πi + πj + (1− πi − πj))r−2︸ ︷︷ ︸
=1

= πiπjr(r − 1)

= r2πiπj − rπiπj
From this we finally obtain

E[(wi − rπi)(wj − rπj)] = r2πiπj − rπiπj − r2πiπj = −rπiπj (A.8)

Combining the two cases we can express the expectation as

E[(w − rπ)(w − rπ)′] = Diag(rπ)− r2ππ′ (A.9)

148 Appendix

Note 2: Next we show that

(X′W0X)−1X′Diag(ê)r2ππ′Diag(ê)X(X′W0X)−1 = 0 (A.10)

which is used in the proof for the conditional variance.

For brevity we write A = (X′W0X)−1 and note that

(ADiag(ê)rπ)(ADiag(ê)rπ)′ = 0

⇔ (ADiag(ê)rπ) = 0

We hence only have to show the last line. Next we note that

Diag(ê)rπ = Diag(rπ)ê

= W0ê

and since ê = y −Xβwls it follows that

(X′W0X)−1W0(y −Xβwls) = (X′W0X)−1W0y︸ ︷︷ ︸
βwls

− (X′W0X)−1W0X︸ ︷︷ ︸
I

βwls

= 0

A.2 Non-uniform sampling

The following code was used to perform sampling from a set of integers according
to the provided probabilities. The method used is based on the quantile function
/ inverse cumulative probability distribution of the provided probability vector.

The rough idea is to fill the interval [0,1] with enumerated intervals of length
taken from the probability vector. Since the numbers in the probability vector
sum to 1, the intervals will exactly fill [0,1]. Integers with a high probability
will be represented by a larger interval. A uniform random number in [0,1] will
”hit” inside one of the intervals and the corresponding integer is sampled.

function [samples] = nonuniform_sampling(probabilities, sampleSize)

%NONUNIFORM SAMPLING Returns index for data points in the range 1 to

%length(probabilities) according to the weights in probabilities

% Detailed explanation goes here

A.2 Non-uniform sampling 149

samples = zeros(sampleSize,1);

if(abs(sum(probabilities) - 1) > 10e-6)

disp('1st argument is not a probability distribution');

return;

end

% Build cumulative probability vector

collectionSize = length(probabilities);

cdf = zeros(collectionSize,1);

cdf(1) = probabilities(1);

for i=2:collectionSize

cdf(i) = cdf(i-1) + probabilities(i);

end

% The cdf divides the interval [0,1] into pieces of size proportional to

% the weights of the observations. Selecting a random number in this

% interval can be translated back to an observation. An observation with

% high weight is more likely to be 'hit'.

% Uniform sample in [0,1]:

p = rand(sampleSize,1);

% Use binary search:

searchSteps = ceil(log2(collectionSize));

for i=1:sampleSize

collectionIndex = ceil(collectionSize/2);

for s=2:searchSteps

if(cdf(collectionIndex) < p(i))

collectionIndex = collectionIndex + ceil(collectionSize/2^s);

else

collectionIndex = collectionIndex - ceil(collectionSize/2^s);

end

if(collectionIndex < 1)

collectionIndex = 1;

end

if(collectionIndex > collectionSize)

collectionIndex = collectionSize;

end

end

if(cdf(collectionIndex) < p(i))

collectionIndex = collectionIndex + 1;

end

samples(i) = collectionIndex;

end

end

150 Appendix

A.3 Motion-based object tracking - Examples

Here are a few more examples of clustering the SIFT-feature displacement and
use it for detecting objects by their motion. More details are in section 4.4.

(a) Matched SIFT-features

(b) Clustered displacement

Figure A.1: Example 2: K-means clustering of SIFT-feature displacement

A.3 Motion-based object tracking - Examples 151

(a) Matched SIFT-features

(b) Clustered displacement

Figure A.2: Example 3: Bad K-means clustering of SIFT-feature displace-
ment. This is caused by many SIFT-feature mismatches and little
movement of the desired object.

152 Appendix

(a) Matched SIFT-features

(b) Clustered displacement

Figure A.3: Example 2: Gaussian Mixture Model (GMM) clustering of SIFT-
feature displacement

A.3 Motion-based object tracking - Examples 153

(a) Matched SIFT-features

(b) Clustered displacement

Figure A.4: Example 3: Bad Gaussian Mixture Model (GMM) clustering of
SIFT-feature displacement. This is caused by many SIFT-feature
mismatches and little movement of the desired object.

154 Appendix

(a) Matched SIFT-features

(b) Clustered displacement

Figure A.5: Example 2: SVM smoothed K-means clustering of SIFT-feature
displacement

A.3 Motion-based object tracking - Examples 155

(a) Matched SIFT-features

(b) Clustered displacement

Figure A.6: Example 3: Bad SVM smoothed K-means clustering of SIFT-
feature displacement. The smoothing with a SVM with radial basis
function cannot fix the missing movement.

156 Appendix

A.4 Detection of man-made objects

A significant amount of time during the work with this thesis was spent on work-
ing with the SUN2012 database, which is an image database build by the MIT
Computer Science and Artificial Intelligence Group (see details in [XHE+10]).
The database comes with a little over 18.000 distinct images organized in fold-
ers labeled by the scenery shown. A few examples are abbey, fire station and
library. The database comes with 1.915 distinct sceneries. Each image has an
annotation file, which contains polygons and labels marking all objects shown
in the image.

We have used the labels to extract the objects from the images and storing them
in folders according to the label. This way training images of almost 300.000
objects with 5.422 distinct labels were extracted. This is an immense amount of
data which can be used for training. And hence in many experiments we used
only a 1/10th of the data.

One of the early goals of this thesis were to train models for detecting man-
made objects. Examples for natural objects are: Trees, beaches, forests and
mountains. Examples for man-made objects are buildings, furniture, electronic
devices and vehicles. The result of our efforts were not convincing enough to be
presented in the main text, but we would still like to share the approach and
the results.

The following steps were taken in the process and will be presented below:

• Extract objects from the images

• Determine from the image labels whether the object is (usually) man-made
or not.

• Extract features from the object images

• Train models on the extracted features

A.4.1 Extract objects from images

Except for a few programming challenges with reading the XML annotation
files the extraction of the objects were straight forward. By using the polygon
data from the annotation files, we could find a mask, which marked the object,
such that the image was cropped to the size of the object and everything not

A.4 Detection of man-made objects 157

belonging to the object was set to an intensity of 0. The object images were
then stored in folders containing their names.

We show a few examples below. Many of the extracted objects are of very
low resolution, and what becomes clear when looking at many of the extracted
objects is how hard they are to recognize. The first row in figure A.7 shows
objects which are easy to recognize, but it took some effort to find these good
examples. A more representative collection is shown in the second row. Given
the hardness of recognizing the extracted objects, it will be interesting to see
how good the recognition of man-made objects will be given these objects.

(a) Table (b) Tree (c) Bag (d) Microphone

(e) Towel (f) Ground (g) In�atable glove (h) Mirror

Figure A.7: Examples of objects extracted from the SUN2012 database. Would
you recognize the objects without the labels?

A.4.2 Determining �man-made�ness

One of the big challenges was to determine which objects are man-made. First
of all the SUN2012 database is a crowdsourced project which means that the
annotations have been done by a large number of volunteers on the internet.
A few labels, like ’xxx’ and ’ahuge piece of rock’, indicate that there is a little
noise which has to be dealt with and probably a few mislabeled objects. By
examining a few object categories the quality of the labeling seems to be high,
though. Another problem with the crowdsourced marking and annotation of

158 Appendix

Figure A.8: WordNet hypernym hierarchy for the synset ”tree”.

objects is the inconsistent naming of objects, such as ’aircraft’ and ’airplane’
or ’ax’ and ’axe’, where the former is an example of synonym terms while the
latter is a misspelling. Another example is the inconsistent use of uppercase
letters, e.g. ’airplane’ and ’Airplane’. This is easily resolvable by consistently
use lowercase only.

The problem of synonyms, and determining if the object is man-made can be
solved by the same tool. The WordNet database from Princeton University is a
standard tool in the field of text mining, which works with analysis of text and
extracting meaning from them. Synonyms are resolved to the same concept,
or synset, which is WordNet’s central structure, related to other synsets by
concepts like ’hypernym’ and ’hyponym’.

Using a few test cases, we figured out that most man-made objects in WordNet
are collected under the concept ”Artifacts” which is defined by "a man-made ob-
ject taken as a whole". Words in WordNet are represented by synsets. A synset
represents a particular concept in our language. Since words are overloaded (or
ambiguous) the same sequence of letters may represent two different concepts.
For example. ”watch” can refer to an visual activity or to an object showing the
the time. When querying WordNet for objects (using the Java API) we spec-
ified that we are interested in nouns only and for simplicity we chose the first
synset returned (often the most common concept). Each concept (except for a
few root concepts like ”entity”) has a more general concept, called a hypernym.
By stepping through the hypernyms, always using the first and most common
hypernym, we end up at one of the root concepts. For ”tree” the chain looks as
follows:

The same chain for a man-made object like a car looks as follows

A.4 Detection of man-made objects 159

Figure A.9: WordNet hypernym hierarchy for the synset ”car”. The synset
”artifact” is common for most man-made objects.

Since the first common concept is "whole, unit", we can look into the hyponym
of "whole, unit’ and find that it has the following hyponyms, i.e. less general
concepts:

• congener: a whole (a thing or person) of the same kind or category as
another

• living thing: a living (or once living) entity

• natural object: an object occurring naturally; not made by man

• artifact, artefact: a man-made object taken as a whole

• assembly: a unit consisting of components that have been fitted together

• item: a whole individual unit; especially when included in a list or collec-
tion

• sum, total, totality, aggregate: the whole amount

Using ”artifacts” as an indicator for ”man-made”ness, we can cover a wide range
of objects, but we might miss some, so we used the following list of keywords on
WordNet’s synset-definition to detect concepts related to man-made objects:

• human

• people

160 Appendix

• man-made, manmade, man made

Using this method we were able to obtain a misclassification of about 20% (found
by using 100 samples out of the 5422).

A quick scan through the natural objects reveals that a lot of food is also
classified as natural object. Much of the food which we consider natural is still
man-made in one way or another, for example cheese or meat, so we are faced
with the challenge that ”man-made”ness is not crystal clear in all cases. We
have chosen to classify prepared food like cheese and cake as ”man-made” and
raw-food like corn as ”natural”. Furthermore objects for which no WordNet
synset were found, the ”man-made” class was applied, since it is more likely
that unknown words are used for man-made objects than for natural objects.
The resulting lookup table of object labels and their class contains 883 natural
objects and 4.539 man-made objects. Since this distribution is highly skewed
with favor for the man-made objects, it is important to use datasets which are
balanced when training models.

As a fun side effect of having the annotation files for each image in the SUN2012
database, we can determine the probability of a certain object being in an image
given the presence of another. We have for example a high probability of seeing
a wall, if there is a chair in the image, or a ceiling if we see a ceiling lamp. This
can is a valuable resource in computer vision, where the conditional probability
of objects can help improve recognition rates, when other objects have already
been detected. In figure A.10 we show how the mutual conditional probabilities
of two objects O1 and O2 is distributed. The coordinates of the points shown
are (P (O1|O2), P (O2|O1)).

A.4 Detection of man-made objects 161

Figure A.10: Scatterplot of mutual conditional probabilities of two objects
O1 and O2. The coordinates of the points shown are
(P (O1|O2), P (O2|O1)).

A.4.3 Extracting features

With the response vector for the object images in place, we have to generate
features which can be used in building models. Since we have a giant dataset
at our disposal, we have used the objects extracted from the SUN2012 database
both for training, validation and testing. Because of the annotation files, we
had some extra information, which is not normally available. In particular we
tested the circumference and several other features of the bounding polygon as
features. A list of features is given in table A.1 below.

The rationale used in finding features was to search for features which can in-
dicate the amount of regularity in the image. Since man-made objects were as-
sumed to be more clearly structured with a tendency to box-shapes and straight
lines as well as mono-chromatic surfaces, while natural object tend to have a
more fractal like shape and have more irregularities and asymmetries. Not all
these consideration are reflected in the list of features above. Especially a mea-
sure of symmetry is missing. Several challenges have to be addressed when
searching for symmetry and there are several kinds of symmetry, which can be
searched. One approach, not pursued, could be to use 2D-Fourier transform for
detecting symmetries.

162 Appendix

Name Description
Aspect ratio Ratio between the width and height of the ob-

ject image
Contrast The ratio between the lightest and the dark-

est pixel (not including the black surrounding
mask)

Intensity mean and vari-
ance

The mean and intensity of the pixels in the
object

Intensity histogram 10-bin histogram og intensities in the
grayscale version of the objects image

10-bin histogram of gradi-
ent magnitude

10-bin histogram of the magnitude of the im-
age gradients. The magnitudes are normalized
to the interval [0,1]

10-bin histogram of gradi-
ent orientation

A 10-bin histogram of the orientation of the
image gradients. The bins are furthermore
shifted such that the first bin has the highest
value. The total value of all bins is normalized
to 1

10-bin histogram of
weighted gradient orien-
tation

A 10-bin histogram of the orientation of the
image gradients weighted by the same gra-
dients magnitude. This weighting gives high
weights to the orientations with a high mag-
nitude and low weights to the pixels with low
gradient magnitudes. The bins are further-
more shifted such that the first bin has the
highest value. The total value of all bins is
normalized to 1

10-bin histogram of edge-
linearity

10-bin histogram of the linearity measure de-
scribed in section 4.5.

SIFT-count The number of SIFT-features extracted by the
library VLFeat’s vl_sift method

10-bin histogram of SIFT-
feature orientation

10-bin histogram of the orientation of SIFT-
features extracted by the library VLFeat’s
vl_sift method

Circumference Circumference of the object’s polygon ex-
tracted from the annotation file

Area Area of the object’s polygon extracted from
the annotation file

Polygon points Number of corners of the object’s polygon ex-
tracted from the annotation file

Average polygon side
length

Average of the sides of the object’s polygon
extracted from the annotation file

Variance of polygon side
length

Variance of the sides of the object’s polygon
extracted from the annotation file

Table A.1: Features tested for training models for prediction of man-made ob-
jects.

A.4 Detection of man-made objects 163

A.4.4 Training models

With the dataset build from the subsample of objects extracted from the SUN2012
database, using the features explained in table A.1, models can be trained. We
used the machine learning suite Weka 3.7.10 to test several models. The models
and the their performance, based on 10-fold cross validation is shown in table
A.2 below. The best result is obtained with Bagging with Random Trees, which
has a cross validation misclassification of 30%, while AdaBoost has 35% misclas-
sification. Although bagging performs better, AdaBoost with Decision Stumps
were used to implement a function, which can predict if an image shows a man-
made object. This was done, because Decision Stumps are easy and fast to
implement by if-else-statements, while big trees need more effort to implement
across programming frameworks (in this case between Weka and Matlab).

The training was done on a balanced small dataset with 1134 observations with
550 observations representing natural objects and 584 observations representing
man-made objects. ”Man-made”ness is used as the positive category for which
the precision and recall is measured.

From the features presented before, the first bin of the linearity-histogram
showed the best discriminative value. The linearity score is presented in section
4.5. In figure A.11 we show a histogram of the value of the first bin of the
linearity measure, color-coded for man-made objects (red) and natural objects
(blue). We see that the values for natural objects are on average lower than for
man-made objects.

Since a high value of the first bin in the linearity measure histogram indicates
many regions with high linearity in the image of an object, we see an confirma-
tive indication of our hypothesis that man-made objects tend to show a higher
regularity. Regularity is here represented by the number of regions with high
linearity.

We apply the trained Adaboost model to frames from the Zelotypia video. We

Model Precision Recall Misclassification
Adaboost (Decision Stumps) 72% 63% 31.8%
Bagging (Random Trees) 72% 69% 29.8%

Table A.2: Model performance for detection of man-made objects from a bal-
anced dataset with 1134 observations, 584 man-made, 550 natural.
The misclassification is obtained by cross-validation and is hence
the mean of 10 folds.

164 Appendix

Figure A.11: Distribution of the height of bin 1 for the linearity measure for
man-made (red) and natural objects (blue), respectively. We ob-
serve that bin 1 of the histogram with the linearity scores of an
object image tends to have a slightly higher value for man-made
objects. Bin 1 is higher for images with more regions with high
linearity.

divide the frame in small windows from which the necessary features are ex-
tracted and then are fed to the Adaboost model to obtain a prediction of the
”man-made”ness of the window. Two results are shown in figure A.12. The
prediction in the shown images is averaged over several frames to obtain a more
stable tendency of the predicted ”man-made”ness. One problem becomes evi-
dent: Since seldom whole objects are shown in the windows we have a hard
time in telling what class a window should belong to. Does a window showing
a house’s wall partly occluded by a trees belong to the ”natural” or the ”man-
made” class? The performance of our model is hence hard to evaluate on the
video data and the prediction quality is questionable.

When applying the Adaboost model to a test set of SUN2012 database objects,
we can confirm the misclassification of approximately 35%.

A.4 Detection of man-made objects 165

(a) Scene 1

(b) Scene 2

Figure A.12: ”Man-made”ness of regions in two scenes from the Zelotypia
video sequence. Red indicates regions with high ”man-made”ness,
blue indicates regions with natural objects. The predictions are
averaged over several scenes. The background image is the av-
erage of the frames in the respective scenes.

A.4.5 Conclusion

We conclude from the experiments that man-made object detection suffers from
the lack of a good definition of ”man-made”ness. In the detection tests where
we used an Adaboost model on patches of an image, it was not clear when
a patch should be considered ”man-made”, because there was rarely shown a
distinct object in a patch. Also the whole setup with linearity scores was way to
complicated. Since we used the histograms of histograms for the classification,
it is hard to understand the relation between values. The violation of the KISS
principle lead to this part of the thesis being stopped in favor of other topics.

166 Appendix

Bibliography

[AC10] Nir Ailon and Bernard Chazelle. Faster dimension reduction. Com-
munications of the ACM, 53(2):97–104, 2010.

[Bar06] Randal J. Barnes. Matrix differentiation. http://www.atmos.
washington.edu/~dennis/MatrixCalculus.pdf, 2006. [Online;
accessed 20-August-2014].

[BGPS07] Sebastiano Battiato, Giovanni Gallo, Giovanni Puglisi, and Salva-
tore Scellato. Sift features tracking for video stabilization. In Im-
age Analysis and Processing, 2007. ICIAP 2007. 14th International
Conference on, pages 825–830. IEEE, 2007.

[BMP02] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching
and object recognition using shape contexts. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 24(4):509–522, 2002.

[CB06] Dongwei Cao and Daniel Boley. On approximate solutions to sup-
port vector machines. In SDM, pages 534–538. SIAM, 2006.

[Cis14] Cisco. The zettabyte era: Trends and analysis. http://www.cisco.
com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/VNI_Hyperconnectivity_
WP.pdf, 2014. [Online; accessed 28-July-2014].

[Coo77] R. Dennis Cook. Detection of influential observation in linear re-
gression. Technometrics, 19(1), 1977.

[CW82] R. Dennis Cook and Sanford Weisberg. Residuals and Influence
in Regression. Monographs on statistics and applied probability.
Chapman & Hall, 1982.

http://www.atmos.washington.edu/~dennis/MatrixCalculus.pdf
http://www.atmos.washington.edu/~dennis/MatrixCalculus.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.pdf

168 BIBLIOGRAPHY

[CW08] Emmanuel J Candès and Michael B Wakin. An introduction to
compressive sampling. Signal Processing Magazine, IEEE, 25(2):21–
30, 2008.

[DKM06] Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte
carlo algorithms for matrices i: Approximating matrix multiplica-
tion. SIAM Journal on Computing, 36(1):132–157, 2006.

[FVD10] Gerald Friedland, Oriol Vinyals, and Trevor Darrell. Multimodal
location estimation. In Proceedings of the international conference
on Multimedia, pages 1245–1252. ACM, 2010.

[Har13] Stefan Harmeling. Matrix differential calculus cheat sheet. http://
people.tuebingen.mpg.de/harmeling/bn142.pdf, 2013. [Online;
accessed 20-August-2014].

[HW78] David C Hoaglin and Roy E Welsch. The hat matrix in regression
and anova. The American Statistician, 32(1):17–22, 1978.

[Jac] William G. Jacoby. Regression iii: Advanced methods, lec-
ture 11. http://polisci.msu.edu/jacoby/icpsr/regress3/
lectures/week3/11.Outliers.pdf. [Online; accessed 20-August-
2014].

[JL84] William B Johnson and Joram Lindenstrauss. Extensions of lips-
chitz mappings into a hilbert space. Contemporary mathematics,
26(189-206):1, 1984.

[Jol72] Ian T Jolliffe. Discarding variables in a principal component analy-
sis. i: Artificial data. Applied statistics, pages 160–173, 1972.

[Jul81] Bela Julesz. Textons, the elements of texture perception, and their
interactions. Nature, 290(5802):91–97, 1981.

[KH03] Sanjiv Kumar and Martial Hebert. Man-made structure detec-
tion in natural images using a causal multiscale random field. In
Computer Vision and Pattern Recognition, 2003. Proceedings. 2003
IEEE Computer Society Conference on, volume 1, pages I–119.
IEEE, 2003.

[KS08] Hina Keval and M Angela Sasse. To catch a thief–you need at least 8
frames per second: the impact of frame rates on user performance in
a cctv detection task. In Proceedings of the 16th ACM international
conference on Multimedia, pages 941–944. ACM, 2008.

[KWR10] Nathan L Knight, Jinling Wang, and Chris Rizos. Generalised
measures of reliability for multiple outliers. Journal of Geodesy,
84(10):625–635, 2010.

http://people.tuebingen.mpg.de/harmeling/bn142.pdf
http://people.tuebingen.mpg.de/harmeling/bn142.pdf
http://polisci.msu.edu/jacoby/icpsr/regress3/lectures/week3/11.Outliers.pdf
http://polisci.msu.edu/jacoby/icpsr/regress3/lectures/week3/11.Outliers.pdf

BIBLIOGRAPHY 169

[Lib07] Edo Liberty. The random projection method. http://www.cs.
yale.edu/homes/el327/papers/RandomProjectionsSeminar.
pdf, 2007. [Online; accessed 27-July-2014].

[Low99] David G Lowe. Object recognition from local scale-invariant fea-
tures. In Computer vision, 1999. The proceedings of the seventh
IEEE international conference on, volume 2, pages 1150–1157. Ieee,
1999.

[Low04] David G Lowe. Distinctive image features from scale-invariant key-
points. International journal of computer vision, 60(2):91–110, 2004.

[LYS+11] Tie Liu, Zejian Yuan, Jian Sun, Jingdong Wang, Nanning Zheng,
Xiaoou Tang, and Heung-Yeung Shum. Learning to detect a salient
object. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 33(2):353–367, 2011.

[MMY13] Ping Ma, Michael WMahoney, and Bin Yu. A statistical perspective
on algorithmic leveraging. arXiv preprint arXiv:1306.5362, 2013.

[MR96] Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms.
ACM Computing Surveys (CSUR), 28(1):33–37, 1996.

[NNJ05] Ko Nishino, Shree K Nayar, and Tony Jebara. Clustered blockwise
pca for representing visual data. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 27(10):1675–1679, 2005.

[OCLF10] Mustafa Ozuysal, Michael Calonder, Vincent Lepetit, and Pascal
Fua. Fast keypoint recognition using random ferns. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 32(3):448–461,
2010.

[PCD08] Nicolas Pinto, David D Cox, and James J DiCarlo. Why is real-
world visual object recognition hard? PLoS computational biology,
4(1):e27, 2008.

[PCI+07] James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and An-
drew Zisserman. Object retrieval with large vocabularies and fast
spatial matching. In Computer Vision and Pattern Recognition,
2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE, 2007.

[PK13] Andreas Trier Poulsen and Simon Due Kamronn. Machine learning
for social eeg. Master’s thesis, Technical University of Denmark,
2013.

[PKB14] Dimitris Papapailiopoulos, Anastasios Kyrillidis, and Christos
Boutsidis. Provable deterministic leverage score sampling. arXiv
preprint arXiv:1404.1530, 2014.

http://www.cs.yale.edu/homes/el327/papers/RandomProjectionsSeminar.pdf
http://www.cs.yale.edu/homes/el327/papers/RandomProjectionsSeminar.pdf
http://www.cs.yale.edu/homes/el327/papers/RandomProjectionsSeminar.pdf

170 BIBLIOGRAPHY

[PP08] Kaare Brandt Petersen and Michael Syskind Pedersen. The matrix
cookbook. Technical University of Denmark, pages 7–15, 2008.

[Pre81] Daryl Pregibon. Logistic regression diagnostics. The Annals of
Statistics, pages 705–724, 1981.

[Pró10] Witold Prószyński. Another approach to reliability measures for sys-
tems with correlated observations. Journal of Geodesy, 84(9):547–
556, 2010.

[RRC+04] Oscar D. Robles, U. Rey, Juan Carlos, C. Tulipán, Angel Ro-
dríguez, Pablo Toharia, U. Rey, Juan Carlos, C. Tulipán, Luis Pas-
tor, U. Rey, Juan Carlos, and C. Tulipán. Automatic video cut
detection using adaptive thresholds. In In 4th IASTED Interna-
tional Conference on Visualization, Imaging, and Image Processing
- VIIP 2004, 2004.

[sp] Open source project. Vlfeat. https://www.vlfeat.org/.

[WCCF09] Jung Ming Wang, Han-Ping Chou, Sei-Wang Chen, and Chiou-
Shann Fuh. Video stabilization for a hand-held camera based on
3d motion model. In Image Processing (ICIP), 2009 16th IEEE
International Conference on, pages 3477–3480. IEEE, 2009.

[WHF98] Bo-Cheng Wei, Yue-Qing Hu, and Wing-Kam Fung. Generalized
leverage and its applications. Scandinavian Journal of statistics,
25(1):25–37, 1998.

[XHE+10] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and
Antonio Torralba. Sun database: Large-scale scene recognition from
abbey to zoo. In Computer vision and pattern recognition (CVPR),
2010 IEEE conference on, pages 3485–3492. IEEE, 2010.

[YSCM06] Junlan Yang, Dan Schonfeld, Chong Chen, and Magdi Mohamed.
Online video stabilization based on particle filters. In Image Pro-
cessing, 2006 IEEE International Conference on, pages 1545–1548.
IEEE, 2006.

[ZGWX05] Song-Chun Zhu, Cheng-En Guo, Yizhou Wang, and Zijian Xu.
What are textons? International Journal of Computer Vision, 62(1-
2):121–143, 2005.

https://www.vlfeat.org/

	Summary (English)
	Summary (Danish)
	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation and preview
	1.2 Randomness in models
	1.3 Report structure
	1.4 Conventions

	2 Theory
	2.1 Why randomness?
	2.1.1 Literature review
	2.1.2 5 Reasons for using randomness

	2.2 Statistical leverage in linear regression
	2.2.1 Brief introduction to the experimental setup
	2.2.2 Summary of results by Ma et al.

	2.3 Generalized leverage score
	2.3.1 The analytical approach
	2.3.2 Extension to arbitrary models - stochastic simulation
	2.3.3 Example - SVM

	2.4 Other importance measures
	2.5 Random projections
	2.6 SIFT-features
	2.6.1 Computational complexity

	3 Data
	3.1 Naming conventions
	3.2 Data characteristics
	3.3 Movies used
	3.4 Data representations

	4 Experiments & results
	4.1 Cut detection
	4.1.1 Experiment description
	4.1.2 Results

	4.2 Scene category detection
	4.2.1 Prior art
	4.2.2 Algorithm for scene category detection - SIFT-features
	4.2.3 Algorithm for scene category detection - Random projections

	4.3 Camera motion detection
	4.4 Motion-based object extraction
	4.5 Linearity measure
	4.6 Video compression
	4.6.1 Weighted sampling
	4.6.2 Evaluating the random sample reconstruction

	5 Discussion
	6 Conclusion
	6.1 Further research
	6.1.1 Theoretical topics
	6.1.2 Experimental topics

	A Appendix
	A.1 Detailed proof of theorem 2.2
	A.2 Non-uniform sampling
	A.3 Motion-based object tracking - Examples
	A.4 Detection of man-made objects
	A.4.1 Extract objects from images
	A.4.2 Determining ''man-made''ness
	A.4.3 Extracting features
	A.4.4 Training models
	A.4.5 Conclusion

	Bibliography

